Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 211(4): 527-538, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37449905

RESUMO

IgE-mediated mast cell activation is a driving force in allergic disease in need of novel interventions. Statins, long used to lower serum cholesterol, have been shown in multiple large-cohort studies to reduce asthma severity. We previously found that statins inhibit IgE-induced mast cell function, but these effects varied widely among mouse strains and human donors, likely due to the upregulation of the statin target, 3-hydroxy-3-methylgutaryl-CoA reductase. Statin inhibition of mast cell function appeared to be mediated not by cholesterol reduction but by suppressing protein isoprenylation events that use cholesterol pathway intermediates. Therefore, we sought to circumvent statin resistance by targeting isoprenylation. Using genetic depletion of the isoprenylation enzymes farnesyltransferase and geranylgeranyl transferase 1 or their substrate K-Ras, we show a significant reduction in FcεRI-mediated degranulation and cytokine production. Furthermore, similar effects were observed with pharmacological inhibition with the dual farnesyltransferase and geranylgeranyl transferase 1 inhibitor FGTI-2734. Our data indicate that both transferases must be inhibited to reduce mast cell function and that K-Ras is a critical isoprenylation target. Importantly, FGTI-2734 was effective in vivo, suppressing mast cell-dependent anaphylaxis, allergic pulmonary inflammation, and airway hyperresponsiveness. Collectively, these findings suggest that K-Ras is among the isoprenylation substrates critical for FcεRI-induced mast cell function and reveal isoprenylation as a new means of targeting allergic disease.


Assuntos
Anafilaxia , Inibidores de Hidroximetilglutaril-CoA Redutases , Camundongos , Humanos , Animais , Receptores de IgE/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Farnesiltranstransferase/metabolismo , Mastócitos/metabolismo , Anafilaxia/metabolismo , Transdução de Sinais , Degranulação Celular , Imunoglobulina E/metabolismo , Inflamação/metabolismo , Colesterol/metabolismo , Prenilação
2.
J Allergy Clin Immunol ; 147(2): 622-632, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32717252

RESUMO

BACKGROUND: An elevated basal serum tryptase level is associated with severe systemic anaphylaxis, most notably caused by Hymenoptera envenomation. Although clonal mast cell disease is the culprit in some individuals, it does not fully explain this clinical association. OBJECTIVE: Our aim was to determine the prevalence and associated impact of tryptase genotypes on anaphylaxis in humans. METHODS: Cohorts with systemic mastocytosis (SM) and venom as well as idiopathic anaphylaxis from referral centers in Italy, Slovenia, and the United States, underwent tryptase genotyping by droplet digital PCR. Associated anaphylaxis severity (Mueller scale) was subsequently examined. Healthy volunteers and controls with nonatopic disease were recruited and tryptase was genotyped by droplet digital PCR and in silico analysis of genome sequence, respectively. The effects of pooled and recombinant human tryptases, protease activated receptor 2 agonist and antagonist peptides, and a tryptase-neutralizing mAb on human umbilical vein endothelial cell permeability were assayed using a Transwell system. RESULTS: Hereditary α-tryptasemia (HαT)-a genetic trait caused by increased α-tryptase-encoding Tryptase-α/ß1 (TPSAB1) copy number resulting in elevated BST level-was common in healthy individuals (5.6% [n = 7 of 125]) and controls with nonatopic disease (5.3% [n = 21 of 398]). HαT was associated with grade IV venom anaphylaxis (relative risk = 2.0; P < .05) and more prevalent in both idiopathic anaphylaxis (n = 8 of 47; [17%; P = .006]) and SM (n = 10 of 82 [12.2%; P = .03]) relative to the controls. Among patients with SM, concomitant HαT was associated with increased risk for systemic anaphylaxis (relative risk = 9.5; P = .007). In vitro, protease-activated receptor-2-dependent vascular permeability was induced by pooled mature tryptases but not α- or ß-tryptase homotetramers. CONCLUSIONS: Risk for severe anaphylaxis in humans is associated with inherited differences in α-tryptase-encoding copies at TPSAB1.


Assuntos
Anafilaxia/genética , Mastocitose Sistêmica/genética , Triptases/sangue , Adolescente , Adulto , Idoso , Venenos de Artrópodes/efeitos adversos , Criança , Variações do Número de Cópias de DNA , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Triptases/genética , Adulto Jovem
3.
J Pharmacol Exp Ther ; 374(1): 104-112, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32434944

RESUMO

Statin drugs are widely employed in the clinic to reduce serum cholesterol. Because of their hydroxymethylglutaryl coenzyme A reductase antagonism, statins also reduce isoprenyl lipids necessary for the membrane anchorage and signaling of small G-proteins in the Ras superfamily. We previously found that statins suppress immunoglobulin E (IgE)-mediated mast cell activation, suggesting these drugs might be useful in treating allergic disease. Although IgE-induced function is critical to allergic inflammation, mast cell proliferation and survival also impact atopic disease and mast cell neoplasia. In this study, we describe fluvastatin-mediated apoptosis in primary and transformed mast cells. An IC50 was achieved between 0.8 and 3.5 µM in both cell types, concentrations similar to the reported fluvastatin serum Cmax value. Apoptosis was correlated with reduced stem cell factor (SCF)-mediated signal transduction, mitochondrial dysfunction, and caspase activation. Complementing these data, we found that p53 deficiency or Bcl-2 overexpression reduced fluvastatin-induced apoptosis. We also noted evidence of cytoprotective autophagy in primary mast cells treated with fluvastatin. Finally, we found that intraperitoneal fluvastatin treatment reduced peritoneal mast cell numbers in vivo These findings offer insight into the mechanisms of mast cell survival and support the possible utility of statins in mast cell-associated allergic and neoplastic diseases. SIGNIFICANCE STATEMENT: Fluvastatin, a statin drug used to lower cholesterol, induces apoptosis in primary and transformed mast cells by antagonizing protein isoprenylation, effectively inhibiting stem cell factor (SCF)-induced survival signals. This drug may be an effective means of suppressing mast cell survival.


Assuntos
Apoptose/efeitos dos fármacos , Fluvastatina/farmacologia , Mastócitos/citologia , Mastócitos/efeitos dos fármacos , Animais , Células da Medula Óssea/citologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Mastócitos/metabolismo , Camundongos
4.
J Allergy Clin Immunol ; 141(1): 311-321.e10, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28624612

RESUMO

BACKGROUND: Mast cells (MCs), the primary effector cell of the atopic response, participate in immune defense at host/environment interfaces, yet the mechanisms by which they interact with CD4+ T cells has been controversial. OBJECTIVE: We used in situ-matured primary human MCs and matched CD4+ T cells to diligently assess the ability of MCs to act as antigen-presenting cells. METHODS: We examined mature human skin-derived MCs using flow cytometry for expression of antigen-presenting molecules, for their ability to stimulate CD4+ T cells to express CD25 and proliferate when exposed to superantigen or to cytomegalovirus (CMV) antigen using matched T cells and MCs from CMV-seropositive or CMV-seronegative donors, and for antigen uptake. Subcellular localization of antigen, HLA molecules, and tryptase was analyzed by using structured illumination microscopy. RESULTS: Our data show that IFN-γ induces HLA class II, HLA-DM, CD80, and CD40 expression on MCs, whereas MCs take up soluble and particulate antigens in an IFN-γ-independent manner. IFN-γ-primed MCs guide activation of T cells by Staphylococcus aureus superantigen and, when preincubated with CMV antigens, induce a recall CD4+ TH1 proliferation response only in CMV-seropositive donors. MCs co-opt their secretory granules for antigen processing and presentation. Consequently, MC degranulation increases surface delivery of HLA class II/peptide, further enhancing stimulation of T-cell proliferation. CONCLUSIONS: IFN-γ primes human MCs to activate T cells through superantigen and to present CMV antigen to TH1 cells, co-opting MC secretory granules for antigen processing and presentation and creating a feed-forward loop of T-cell-MC cross-activation.


Assuntos
Apresentação de Antígeno , Linfócitos T CD4-Positivos/imunologia , Mastócitos/imunologia , Apresentação de Antígeno/imunologia , Células Apresentadoras de Antígenos/imunologia , Antígenos Virais/imunologia , Transporte Biológico , Biomarcadores , Linfócitos T CD4-Positivos/metabolismo , Comunicação Celular , Células Cultivadas , Dinaminas , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Imunofenotipagem , Interferon gama/metabolismo , Mastócitos/metabolismo , Especificidade do Receptor de Antígeno de Linfócitos T
5.
J Immunol ; 186(12): 7136-43, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21562164

RESUMO

Human α- and ß-protryptase zymogens are abundantly and selectively produced by mast cells, but the mechanism(s) by which they are processed is uncertain. ß-Protryptase is sequentially processed in vitro by autocatalysis at R(-3) followed by cathepsin (CTS) C proteolysis to the mature enzyme. However, mast cells from CTSC-deficient mice successfully convert protryptase (pro-murine mast cell protease-6) to mature murine mast cell protease-6. α-Protryptase processing cannot occur by trypsin-like enzymes due to an R(-3)Q substitution. Thus, biological mechanisms for processing these zymogens are uncertain. ß-Tryptase processing activity(ies) distinct from CTSC were partially purified from human HMC-1 cells and identified by mass spectroscopy to include CTSB and CTSL. Importantly, CTSB and CTSL also directly process α-protryptase (Q(-3)) and mutated ß-protryptase (R(-3)Q) as well as wild-type ß-protryptase to maturity, indicating no need for autocatalysis, unlike the CTSC pathway. Heparin promoted tryptase tetramer formation and protected tryptase from degradation by CTSB and CTSL. Thus, CTSL and CTSB are capable of directly processing both α- and ß-protryptases from human mast cells to their mature enzymatically active products.


Assuntos
Catepsinas/metabolismo , Precursores Enzimáticos/metabolismo , Mastócitos/enzimologia , Processamento de Proteína Pós-Traducional , Triptases/metabolismo , Catepsina B/metabolismo , Catepsina C/metabolismo , Catepsina L/metabolismo , Catepsinas/análise , Linhagem Celular , Heparina/farmacologia , Humanos , Espectrometria de Massas , Mastócitos/metabolismo
6.
J Immunol ; 187(4): 1912-8, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21742978

RESUMO

Human ß-tryptase is stored in secretory granules of human mast cells as a heparin-stabilized tetramer. ß-Protryptase in solution can be directly processed to the mature enzyme by cathepsin (CTS) L and CTSB, and sequentially processed by autocatalysis at R(-3), followed by CTSC proteolysis. However, it is uncertain which CTS is involved in protryptase processing inside human mast cells, because murine bone marrow-derived mast cells from CTSC-deficient mice convert protryptase (pro-mouse mast cell protease-6) to mature mouse mast cell protease-6. This finding suggests that other proteases are important for processing human ß-protryptase. In the current study, reduction of either CTSB or CTSL activity inside HMC-1 cells by short hairpin RNA silencing or CTS-specific pharmacologic inhibitors substantially reduced mature ß-tryptase formation. Similar reductions of tryptase levels in primary skin-derived mast cells were observed with these pharmacologic inhibitors. In contrast, protryptase processing was minimally reduced by short hairpin RNA silencing of CTSC. A putative pharmacologic inhibitor of CTSC markedly reduced tryptase levels, suggesting an off-target effect. Skin mast cells contain substantially greater amounts of CTSL and CTSB than do HMC-1 cells, the opposite being found for CTSC. Both CTSL and CTSB colocalize to the secretory granule compartment of skin mast cells. Thus, CTSL and CTSB are central to the processing of protryptase(s) in human mast cells and are potential targets for attenuating production of mature tryptase in vivo.


Assuntos
Catepsina B/metabolismo , Catepsina C/metabolismo , Catepsina L/metabolismo , Precursores Enzimáticos/metabolismo , Mastócitos/enzimologia , Triptases/metabolismo , Animais , Catepsina B/genética , Catepsina B/imunologia , Catepsina C/genética , Catepsina C/imunologia , Catepsina L/genética , Catepsina L/imunologia , Linhagem Celular Tumoral , Precursores Enzimáticos/genética , Precursores Enzimáticos/imunologia , Humanos , Mastócitos/imunologia , Camundongos , Camundongos Mutantes , Vesículas Secretórias/enzimologia , Vesículas Secretórias/genética , Vesículas Secretórias/imunologia , Pele/enzimologia , Pele/imunologia , Triptases/genética , Triptases/imunologia
7.
Rev Sci Instrum ; 92(2): 023705, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648098

RESUMO

We present in this paper a new design of a capacitive calibration kit for scanning microwave microscopy (SMM). As demonstrated by finite element modelings, the produced devices are highly independent of material parameters due to their lateral configuration. The fabrication of these gold-based structures is realized by using well established clean-room techniques. SMM measurements are performed under different conditions, and all capacitive structures exhibit a strong contrast with respect to the non-capacitive background. The obtained experimental data are employed to calibrate the used SMM tips and to extract the capacitance of produced devices following a method based on the short-open-load calibration algorithm for one-port vector network analyzers. The comparison of experimental capacitance and nominal values provided by our models proves the applicability of the used calibration approach for a wide frequency range.

8.
J Exp Med ; 216(10): 2348-2361, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31337736

RESUMO

Both α-tryptase and ß-tryptase are preferentially expressed by human mast cells, but the purpose of α-tryptase is enigmatic, because its tetramers lack protease activity, whereas ß-tryptase tetramers are active proteases. The monogenic disorder called hereditary α-tryptasemia, due to increased α-tryptase gene copies and protein expression, presents with clinical features such as vibratory urticaria and dysautonomia. We show that heterotetramers composed of 2α- and 2ß-tryptase protomers (α/ß-tryptase) form naturally in individuals who express α-tryptase. α/ß-Tryptase, but not homotetramer, activates protease-activated receptor-2 (PAR2), which is expressed on cell types such as smooth muscle, neurons, and endothelium. Also, only α/ß-tryptase makes mast cells susceptible to vibration-triggered degranulation by cleaving the α subunit of the EGF-like module-containing mucin-like hormone receptor-like 2 (EMR2) mechanosensory receptor. Allosteric effects of α-tryptase protomers on neighboring ß-tryptase protomers likely result in the novel substrate repertoire of α/ß-tryptase tetramers that in turn cause some of the clinical features of hereditary α-tryptasemia and of other disorders involving mast cells.


Assuntos
Degranulação Celular , Doenças Genéticas Inatas , Mastócitos/enzimologia , Multimerização Proteica , Triptases , Vibração/efeitos adversos , Adulto , Regulação Alostérica/genética , Feminino , Doenças Genéticas Inatas/enzimologia , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/patologia , Humanos , Masculino , Mastócitos/patologia , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Triptases/genética , Triptases/metabolismo
9.
Sci Rep ; 6: 25670, 2016 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-27181495

RESUMO

Moiré superlattices in graphene supported on various substrates have opened a new avenue to engineer graphene's electronic properties. Yet, the exact crystallographic structure on which their band structure depends remains highly debated. In this scanning tunneling microscopy and density functional theory study, we have analysed graphene samples grown on multilayer graphene prepared onto SiC and on the close-packed surfaces of Re and Ir with ultra-high precision. We resolve small-angle twists and shears in graphene, and identify large unit cells comprising more than 1,000 carbon atoms and exhibiting non-trivial nanopatterns for moiré superlattices, which are commensurate to the graphene lattice. Finally, a general formalism applicable to any hexagonal moiré is presented to classify all reported structures.

10.
Nat Genet ; 48(12): 1564-1569, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27749843

RESUMO

Elevated basal serum tryptase levels are present in 4-6% of the general population, but the cause and relevance of such increases are unknown. Previously, we described subjects with dominantly inherited elevated basal serum tryptase levels associated with multisystem complaints including cutaneous flushing and pruritus, dysautonomia, functional gastrointestinal symptoms, chronic pain, and connective tissue abnormalities, including joint hypermobility. Here we report the identification of germline duplications and triplications in the TPSAB1 gene encoding α-tryptase that segregate with inherited increases in basal serum tryptase levels in 35 families presenting with associated multisystem complaints. Individuals harboring alleles encoding three copies of α-tryptase had higher basal serum levels of tryptase and were more symptomatic than those with alleles encoding two copies, suggesting a gene-dose effect. Further, we found in two additional cohorts (172 individuals) that elevated basal serum tryptase levels were exclusively associated with duplication of α-tryptase-encoding sequence in TPSAB1, and affected individuals reported symptom complexes seen in our initial familial cohort. Thus, our findings link duplications in TPSAB1 with irritable bowel syndrome, cutaneous complaints, connective tissue abnormalities, and dysautonomia.


Assuntos
Dor Crônica/genética , Doenças do Tecido Conjuntivo/genética , Variações do Número de Cópias de DNA/genética , Disautonomia Familiar/genética , Gastroenteropatias/genética , Prurido/genética , Dermatopatias/genética , Triptases/sangue , Triptases/genética , Adolescente , Adulto , Idoso , Criança , Dor Crônica/sangue , Dor Crônica/enzimologia , Doenças do Tecido Conjuntivo/sangue , Doenças do Tecido Conjuntivo/enzimologia , Disautonomia Familiar/sangue , Disautonomia Familiar/enzimologia , Feminino , Gastroenteropatias/sangue , Gastroenteropatias/enzimologia , Humanos , Masculino , Pessoa de Meia-Idade , Prurido/sangue , Prurido/enzimologia , Dermatopatias/sangue , Dermatopatias/enzimologia , Adulto Jovem
11.
Adv Enzyme Regul ; 44: 1-10, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15581478

RESUMO

We found a novel procaspase-3 activating cascade mediated by lysosomal enzyme. The activating enzyme of procaspase-3, named lysoapoptase having the molecular weight of 78kDa was determined to be a lactoferrin located in the lysosome. Recombinant lactoferrin accelerated the processing of procaspase-3 to form active caspase-3 in vitro. D-Galactosamine is a well-known inducer of hepatocyte apoptosis. The caspase-3 which plays a common central role in the final step of various apoptosis cascades, was dramatically increased in the cytoplasm by the d-galactosamine administration in vivo. When D-galactosamine was administrated as a death signal in vivo, the lysosomal lactoferrin was released into the cytoplasm and procaspase-3 located in the cytoplasm was processed to form active caspase-3. The cotreatment of epigallo-catechin gallate resulted in the complete protection of the hepatocyte apoptosis suppressing the increases of caspase-3 in the cytoplasm. The caspase-3 activity was also inhibited directly by the epigallo-catechin gallate. Therefore, all apoptosis cascades mediated by caspase-3 should be suppressed by epigallo-catechin gallate. The caspase-3 activity was not only directly inhibited by epigallo-catechin gallate in vitro, but the release of lactoferrin from the lysosomes into the cytoplasm was also suppressed by epigallo-catechin gallate treatment in vivo. Therefore, the apoptosis induction was suppressed at the two successive steps by cotreatment of epigallo-catechin gallate in vivo.


Assuntos
Apoptose/fisiologia , Catequina/análogos & derivados , Catequina/farmacologia , Lisossomos/enzimologia , Inibidores de Proteases/farmacologia , Substituição de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Caspase 3 , Caspases/isolamento & purificação , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Galactosamina/toxicidade , Cinética , Lactoferrina/metabolismo , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/fisiologia , Modelos Biológicos , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/metabolismo
12.
Electrophoresis ; 26(6): 1038-45, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15669004

RESUMO

A novel, sensitive method for detecting protease inhibitors by using fluorescent protease substrates in gels is described. The protease inhibitors were separated on sodium dodecyl sulfate (SDS)-polyacrylamide gels containing a copolymerized peptide substrate, namely 4-methyl-coumaryl-7-amide (MCA). As the incorporated substrates in the gel, Boc-Phe Ser-Arg-MCA was used for trypsin, Suc-Ala-Ala-Pro-Phe-MCA for alpha-chymotrypsin, and Z-Phe-Arg-MCA for papain. After electrophoresis, washing and incubating the gel with the target protease solutions allowed the substrate to be cleaved by the protease, and the release of the fluorescent 7 amino-4 methyl-coumarin (AMC), which was detected under a UV transilluminator. The uncleaved peptide-MCA substrate remained where the inhibitors were present, and was visualized as dark blue bands on the light-green fluorescent background gel. This new method offers several advantages over other previous methods including: (i) greatly increased sensitivity can be achieved in a shorter period of time, which may be useful for discovering new protease inhibitors in small amounts of crude material; (ii) the procedure is quite simple and quick since the incubation period is very short and no time is needed for staining and destaining steps; (iii) since these probes using substrate specificity/target proteases, they are excellent tools for detection and discrimination of unknown protease inhibitors for various target proteases.


Assuntos
Cumarínicos/metabolismo , Eletroforese em Gel de Poliacrilamida/métodos , Corantes Fluorescentes , Inibidores de Proteases/isolamento & purificação , Animais , Quimotripsina/antagonistas & inibidores , Mucosa Intestinal/química , Intestino Delgado/química , Sensibilidade e Especificidade , Suínos , Inibidores da Tripsina/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA