Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genomics Inform ; 22(1): 2, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38907330

RESUMO

Small auxin-up RNA (SAUR) proteins were known as a large family that supposedly participated in various biological processes in higher plant species. However, the SAUR family has been still not explored in cacao (Theobroma cacao L.), one of the most important industrial trees. The present work, as an in silico study, revealed comprehensive aspects of the structure, phylogeny, and expression of TcSAUR gene family in cacao. A total of 90 members of the TcSAUR gene family have been identified and annotated in the cacao genome. According to the physic-chemical features analysis, all TcSAUR proteins exhibited slightly similar characteristics. Phylogenetic analysis showed that these TcSAUR proteins could be categorized into seven distinct groups, with 10 sub-groups. Our results suggested that tandemly duplication events, segmental duplication events, and whole genome duplication events might be important in the growth of the TcSAUR gene family in cacao. By re-analyzing the available transcriptome databases, we found that a number of TcSAUR genes were exclusively expressed during the zygotic embryogenesis and somatic embryogenesis. Taken together, our study will be valuable to further functional characterizations of candidate TcSAUR genes for the genetic engineering of cacao.

2.
Environ Pollut ; 317: 120644, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36375578

RESUMO

Three types of biochar (BC) (mulberry biochar (MB), wheat straw biochar, and pine tree sawdust biochar) were prepared and used to stabilize hydrophobic organic compounds (HOCs) in contaminated sediment. The kinetics of HOC adsorption to the BCs had two distinct stages. The second stage adsorption process was longer for MB than the other BCs, presumably because MB contained large pores, mesopores, and micropores. The adsorption isotherms for the three BCs were described well by the Freundlich model. The adsorption capacities of MB, WS and PT for HOCs ranged between 106.7 and 1202 µg/g, 135.1 and 1002 µg/g, and 255.6 and 909 µg/g, respectively. The apparent HOC adsorption coefficients (KBC-w) for the three BCs were determined from the isotherm data and were similar. The HOC logKOW values correlated well with the logKBC-w values. In sediment slurry experiments, HOCs were much more effectively stabilized by MB than wheat straw and pine tree sawdust biochar. This was probably because of the MB pore characteristics that favored adsorption of HOCs of various molecular sizes. The Fourier-transform infrared and Raman spectra indicated that the main binding mechanisms were hydrogen boding, hydrophobic interactions, and π-π interactions. MB was found to be a possible agent for stabilizing HOCs in contaminated sediment. HOCs in sediment slurry continued to become adsorbed to MB for a long time, indicating that relatively long reaction times should be allowed for in situ remediation using MB.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Hidrocarbonetos Policíclicos Aromáticos/química , Carvão Vegetal/química , Compostos Orgânicos , Adsorção
3.
Sci Rep ; 13(1): 9529, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308530

RESUMO

Heterosis contributes greatly to the worldwide agricultural yield. However, the molecular mechanism underlying heterosis remains unclear. This study took advantage of Arabidopsis intraspecific hybrids to identify heterosis-related metabolites. Forty-six intraspecific hybrids were used to examine parental effects on seed area and germination time. The degree of heterosis was evaluated based on biomass: combinations showing high heterosis of F1 hybrids exhibited a biomass increase from 6.1 to 44% over the better parent value (BPV), whereas that of the low- and no-heterosis hybrids ranged from - 19.8 to 9.8% over the BPV. Metabolomics analyses of F1 hybrids with high heterosis and those with low one suggested that changes in TCA cycle intermediates are key factors that control growth. Notably, higher fumarate/malate ratios were observed in the high heterosis F1 hybrids, suggesting they provide metabolic support associated with the increased biomass. These hybrids may produce more energy-intensive biomass by speeding up the efficiency of TCA fluxes. However, the expression levels of TCA-process-related genes in F1 hybrids were not associated with the intensity of heterosis, suggesting that the post-transcriptional or post-translational regulation of these genes may affect the productivity of the intermediates in the TCA cycle.


Assuntos
Arabidopsis , Biomassa , Metabolômica , Agricultura , Ciclo do Ácido Cítrico
4.
Gene ; 819: 146210, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35104577

RESUMO

'Sugars Will Eventually be Exported Transporters' (SWEETs) are a group of sugar transporters that play crucial roles in various biological processes, particularly plant stress responses. However, no information is available yet for the CaSWEET family in chickpea. Here, we identified all putative CaSWEET members in chickpea, and obtained their major characteristics, including physicochemical patterns, chromosomal distribution, subcellular localization, gene organization, conserved motifs and three-dimensional protein structures. Subsequently, we explored available transcriptome data to compare spatiotemporal transcript abundance of CaSWEET genes in various major organs. Finally, we studied the changes in their transcript levels in leaves and/or roots following dehydration and exogenous abscisic acid treatments using RT-qPCR to obtain valuable information underlying their potential roles in chickpea responses to water-stress conditions. Our results provide the first insights into the characteristics of the CaSWEET family members and a foundation for further functional characterizations of selected candidate genes for genetic engineering of chickpea.


Assuntos
Transporte Biológico/genética , Cicer/genética , Cicer/metabolismo , Perfilação da Expressão Gênica , Proteínas de Transporte de Monossacarídeos/genética , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Ácido Abscísico/metabolismo , Desidratação/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico
5.
J Colloid Interface Sci ; 581(Pt B): 741-750, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32814196

RESUMO

137Cs is one of the most hazardous radionuclides in nuclear waste owing to its toxicity. Developing an adsorbent for Cs+ with a high capacity and selectivity is a challenging task. A metal-organic framework (MOF) is a material with a high surface area that has been widely applied in wastewater treatment. Exploiting the affinity between ferrocyanide (FC) and Cs+, zeolitic imidazolate framework-8 (ZIF-8) was chemically functionalized with FC, ZIF-8-FC to selectively capture Cs+. After functionalization, ZIF-8-FC has a hollow morphology and small FC related crystals, which might result in better migration of Cs+ inside ZIF-8-FC. This synergistic effect was proven by the Qmax of ZIF-8-FC, 422.42 mg g-1, which is 15.9 times higher than that of ZIF-8. Additionally, ZIF-8-FC retained its good adsorption performance within a pH range of 3-11 and an excellent Cs+ selectivity even in artificial seawater conditions. The structure of ZIF-8-FC after adsorption proves its stability. Furthermore, the thermodynamic adsorption implied that higher temperatures are more favorable for Cs+ uptake. This work demonstrates the remarkable adsorption and selectivity of ZIF-8-FC, which make it a promising candidate for remediation of radioactive Cs+.

6.
Plant Biotechnol (Tokyo) ; 38(1): 67-75, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-34177326

RESUMO

Heterosis refers to the improved agronomic performance of F1 hybrids relative to their parents. Although this phenomenon is widely employed to increase biomass, yield, and stress tolerance of plants, the underlying molecular mechanisms remain unclear. To dissect the metabolic fluctuations derived from genomic and/or environmental differences contributing to the improved biomass of F1 hybrids relative to their parents, we optimized the growth condition for Arabidopsis thaliana F1 hybrids and their parents. Modest but statistically significant increase in the biomass of F1 hybrids was observed. Plant samples grown under the optimized condition were also utilized for integrated omics analysis to capture specific changes in the F1 hybrids. Metabolite profiling of F1 hybrids and parent plants was performed using gas chromatography-mass spectrometry. Among the detected 237 metabolites, 2-oxoglutarate (2-OG) and malate levels were lower and the level of aspartate was higher in the F1 hybrids than in each parent. In addition, microarray analysis revealed that there were 44 up-regulated and 12 down-regulated genes with more than 1.5-fold changes in expression levels in the F1 hybrid compared to each parent. Gene ontology (GO) analyses indicated that genes up-regulated in the F1 hybrids were largely related to organic nitrogen (N) process. Quantitative PCR verified that glutamine synthetase 2 (AtGLN2) was upregulated in the F1 hybrids, while other genes encoding enzymes in the GS-GOGAT cycle showed no significant differences between the hybrid and parent lines. These results suggested the existence of metabolic regulation that coordinates biomass and N metabolism involving AtGLN2 in F1 hybrids.

7.
Plant Biotechnol (Tokyo) ; 36(3): 155-165, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31768117

RESUMO

Photoperiod and sucrose (Suc) assimilation play important roles in the regulation of plant growth and development. However, it remains unclear how natural variation of plants could contribute to metabolic changes under various growth conditions. Here, we investigated the developmental and metabolomic responses of two natural accessions of Arabidopsis thaliana, Columbia (Col) and C24, and their reciprocal F1 hybrids grown under four carbon source regimens, i.e., two different photoperiods and the presence or absence of exogenous Suc supply. The effect of exogenous Suc clearly appeared in the growth of Col and the F1 hybrid but not in C24, whereas long-day conditions had significant positive effects on the growth of all lines. Comparative metabolite profiling of Col, C24, and the F1 hybrid revealed that changes in metabolite levels, particularly sugars, were highly dependent on genotype-specific responses rather than growth conditions. The presence of Suc led to over-accumulation of seven metabolites, including four sugars, a polyamine, and two amino acids in C24, whereas no such accumulation was observed in the profiles of Col and the F1 hybrid. Thus, the comparative metabolite profiling revealed that the two parental lines of the hybrid show a distinct difference in sugar metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA