Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proteins ; 89(2): 141-148, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32862461

RESUMO

Activation of T cells triggers the expression of regulatory molecules like the programmed cell death 1 (PD1) protein. The association of PD1 with the natural ligands PDL1 and PDL2 induces an inhibitory signal that prevents T cells from proliferating and exerting effector functions. However, little is known about how the binding of the ligands induce the PD1 inhibitory signal over T cells effector functions. Here, we explore the dynamics of PD1 free, and in complex with different PDL1 variants as well as the therapeutic antibodies nivolumab and pembrolizumab in order to assess the conformational changes in PD1 related to the signaling process. Our simulations suggest a pre-conformational selection mechanism for the binding of the different PDL1 variants, while an induced-fit model fits better for the molecular recognition process of the therapeutic antibodies. A deep analysis of the changes on PD1 movement upon the binding to different ligands revealed that as larger is the difference in the conformation adopted by loop C'D with respect to the complex with PDL1 is higher the ligand ability to reduce the PD1 inhibitory signaling. This behavior suggests that targeting specific conformations of this loop can be useful for designing therapies able to recover T cells effector functions.


Assuntos
Anticorpos Monoclonais Humanizados/química , Antígeno B7-H1/química , Nivolumabe/química , Receptor de Morte Celular Programada 1/química , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/metabolismo , Antineoplásicos Imunológicos , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Sítios de Ligação , Expressão Gênica , Humanos , Ligantes , Simulação de Dinâmica Molecular , Nivolumabe/imunologia , Nivolumabe/metabolismo , Análise de Componente Principal , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Transdução de Sinais
2.
Biotechnol Bioeng ; 118(5): 1884-1897, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33554345

RESUMO

The cell culture is the central piece of a biotechnological industrial process. It includes upstream (e.g. media preparation, fixed costs, etc.) and downstream steps (e.g. product purification, waste disposal, etc.). In the continuous mode of cell culture, a constant flow of fresh media replaces culture fluid until the system reaches a steady state. This steady state is the standard operation mode which, under very general conditions, is a function of the ratio between the cell density and the dilution rate and depends on the media supplied to the culture. To optimize the production process it is widely accepted that the concentration of the metabolites in this media should be carefully tuned. A poor media may not provide enough nutrients to the culture, while a media too rich in nutrients may be a waste of resources because, either the cells do not use all of the available nutrients, or worse, they over-consume them producing toxic byproducts. In this study, we show how an in-silico study of a genome scale metabolic network coupled to the dynamics of a chemostat could guide the strategy to optimize the media to be used in a continuous process. Given a known media we model the concentrations of the cells in a chemostat as a function of the dilution rate. Then, we cast the problem of optimizing the production process within a linear programming framework in which the goal is to minimize the cost of the media keeping fixed the cell concentration for a given dilution rate in the chemostat. We evaluate our results in two metabolic models: first a simplified model of mammalian cell metabolism, and then in a realistic genome-scale metabolic network of mammalian cells, the Chinese hamster ovary cell line. We explore the latter in more detail given specific meaning to the predictions of the concentrations of several metabolites.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Meios de Cultura , Redes e Vias Metabólicas/genética , Animais , Células CHO , Cricetinae , Cricetulus , Meios de Cultura/análise , Meios de Cultura/química , Meios de Cultura/metabolismo
3.
J Chem Inf Model ; 61(4): 1913-1920, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33765385

RESUMO

Interleukin (IL) 2 and IL15 are two members of the common gamma chain cytokine family, involved in the regulation of the T cell differentiation process. Both molecules use a specific alpha subunit, IL2Rα and IL15Rα, and share the same beta and gamma chains signaling receptors. The presence of the specific alpha subunit modulates the T cell ability to compete for both soluble cytokines while the beta and gamma subunits are responsible for the signal transduction. Recent experimental results point out that the specific alpha subunits modulate the capacity of IL2 and IL15 to induce the differentiation of stimulated T cells. In other membrane receptors, the outcome of the signal transduction has been associated with the strength of the interaction of the signaling subunits. Here, we investigate how IL2Rα and IL15Rα modulate the stability of their signaling complexes by combining molecular dynamics simulations and free energy calculations. Our simulations predict that IL2Rα binding destabilizes the ß-γc interaction mediated by IL2, while IL15Rα has the opposite effect. These results explain the ability of IL2Rα and IL15Rα to modulate the signaling outcome and suggest new strategies for the development of better CD8+ T cell differentiation protocols for adoptive cell transfer (ACT).


Assuntos
Subunidade alfa de Receptor de Interleucina-15 , Interleucina-2 , Subunidade gama Comum de Receptores de Interleucina/genética , Interleucina-15 , Subunidade alfa de Receptor de Interleucina-2 , Transdução de Sinais
4.
J Theor Biol ; 487: 110113, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31830463

RESUMO

IL-1 system is involved in the induction and maintenance of chronic inflammation associated with several autoimmune diseases and cancer, mainly due to its capacity to promote the secretion of inflammatory mediators. For this reason, several intracellular and extracellular mechanisms for this system have been fixed during the evolution. In spite of the large description of molecular interactions between IL-1 ligands and receptors, little is known about the relevance and limits of the extracellular regulatory mechanims in different scenarios. To tackle this problem, we developed and calibrated a mathematical model including all the known interactions between IL-1 ligands and IL-1Rs and calibrate it with experimental data of IL-1 binding to different cells. The model predicts that, independently on the IL-1Rs expression, IL-1α has more ability than IL-1ß to induce IL-1 signaling, which suggests that both ligands can be equally relevant for the IL-1 related inflammation. On the other hand, at the cell level, IL-1 signaling is mainly controlled by IL-1R1 and IL-1R3 and not by IL-1R2. Moreover, the soluble form of IL-1R1 and IL-1RA have the highest capacity to prevent IL-1α while IL-1R2 and IL-1R1 and IL-1RA have a similar capacity to prevent IL-1ß signaling. The soluble IL-1R3 has the lowest capacity to prevent IL-1 signaling and preferentially inhibits cells with low number of IL-1R3. In general, model predictions suggest several ways in which IL-1 controlling system may fail, developing IL-1 related inflammation.


Assuntos
Doenças Autoimunes , Inflamação , Humanos , Transdução de Sinais
5.
J Immunol ; 200(10): 3475-3484, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29618524

RESUMO

IL-2 is critical for peripheral tolerance mediated by regulatory T (Treg) cells, which represent an obstacle for effective cancer immunotherapy. Although IL-2 is important for effector (E) T cell function, it has been hypothesized that therapies blocking IL-2 signals weaken Treg cell activity, promoting immune responses. This hypothesis has been partially tested using anti-IL-2 or anti-IL-2R Abs with antitumor effects that cannot be exclusively attributed to lack of IL-2 signaling in vivo. In this work, we pursued an alternative strategy to block IL-2 signaling in vivo, taking advantage of the trimeric structure of the IL-2R. We designed an IL-2 mutant that conserves the capacity to bind to the αß-chains of the IL-2R but not to the γc-chain, thus having a reduced signaling capacity. We show our IL-2 mutein inhibits IL-2 Treg cell-dependent differentiation and expansion. Moreover, treatment with IL-2 mutein reduces Treg cell numbers and impairs tumor growth in mice. A mathematical model was used to better understand the effect of the mutein on Treg and E T cells, suggesting suitable strategies to improve its design. Our results show that it is enough to transiently inhibit IL-2 signaling to bias E and Treg cell balance in vivo toward immunity.


Assuntos
Proliferação de Células/efeitos dos fármacos , Interleucina-2/antagonistas & inibidores , Linfocinas/farmacologia , Neoplasias/terapia , Transdução de Sinais/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Humanos , Imunoterapia/métodos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/metabolismo , Tolerância Periférica/efeitos dos fármacos
6.
Gerontology ; 66(6): 553-561, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33105142

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a recent outbreak of coronavirus disease (COVID-19). In Cuba, the first case of COVID-19 was reported on March 11, 2020. Elderly individuals with multiple comorbidities are particularly susceptible to adverse clinical outcomes in the course of SARS-CoV-2 infection. During the outbreak, a local transmission event took place in a nursing home in Villa Clara province, Cuba, in which 19 elderly residents tested positive for SARS-CoV-2. METHODS: Based on the increased susceptibility to cytokine release syndrome, inducing respiratory and systemic complications in this population, 19 patients were included in an expanded access clinical trial to receive itolizumab, an anti-CD6 monoclonal antibody. RESULTS: All patients had underlying medical conditions. The product was well tolerated. After the first dose, the course of the disease was favorable, and 18 of the 19 patients (94.7%) were discharged clinically recovered with negative real-time reverse transcription polymerase chain reaction test results at 13 days. After one dose of itolizumab, circulating IL-6 decreased within the first 24-48 h in patients with high baseline values, whereas in patients with low levels, this concentration remained over low values. To preliminarily assess the effect of itolizumab, a control group was selected among the Cuban COVID-19 patients that did not receive immunomodulatory therapy. The control subjects were well matched regarding age, comorbidities, and severity of the disease. The percentage of itolizumab-treated, moderately ill patients who needed to be admitted to the intensive care unit was only one-third of that of the control group not treated with itolizumab. Additionally, treatment with itolizumab reduced the risk of death 10 times as compared with the control group. CONCLUSION: This study corroborates that the timely use of itolizumab in combination with other antivirals reduces COVID-19 disease worsening and mortality. The humanized antibody itolizumab emerges as a therapeutic alternative for patients with COVID-19. Our results suggest the possible use of itolizumab in patients with cytokine release syndrome from other pathologies.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Idoso , Idoso de 80 Anos ou mais , Cuba , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/efeitos dos fármacos
7.
Immun Ageing ; 17(1): 34, 2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33292350

RESUMO

BACKGROUND: Since the COVID-19 outbreak an unprecedented challenge for healthcare systems around the world has been placed. In Cuba, the first case of COVID-19 was reported on March 11. Elderly with multiple comorbidities have been the most risky population. Although most patients present a mild to moderate disease, some have developed severe symptoms. One of the possible mechanisms underlying rapid disease progression is a cytokine storm, in which interleukin (IL) -6 seems to be a major mediator. Itolizumab is a humanized recombinant anti-CD6 monoclonal antibody (MAb), with the ability of reducing serum interferon gamma (INF-γ), tumour necrosis factor alpha (TNFα) and IL-6. Based on these previous results in patients with psoriasis and rheumatoid arthritis, an expanded access clinical trial was approved by the Cuban regulatory agency for COVID-19 critically, severely and moderately ill patients. RESULTS: We show here a short kinetic of IL-6 serum concentration in the first 24 COVID-19 patients treated with itolizumab. Most of patients were elderly with multiple comorbidities. We found that with one itolizumab dose, the circulating IL-6 decreased in critically and severely ill patients, whereas in moderately ill patients the values didn't rise as compared to their low baseline levels. CONCLUSION: These findings suggest that itolizumab could be an attractive therapeutic option to decrease the negative outcome of the cytokine storm in COVID-19 patients. TRIAL REGISTRATION: CECMED IIC RD-EC 179, RPCEC00000311. Registered 4 May 2020 - Retrospectively registered, http://rpcec.sld.cu/ensayos/RPCEC00000311-Sp or http://rpcec.sld.cu/trials/RPCEC00000311-En.

8.
PLoS Comput Biol ; 13(11): e1005835, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29131817

RESUMO

In the continuous mode of cell culture, a constant flow carrying fresh media replaces culture fluid, cells, nutrients and secreted metabolites. Here we present a model for continuous cell culture coupling intra-cellular metabolism to extracellular variables describing the state of the bioreactor, taking into account the growth capacity of the cell and the impact of toxic byproduct accumulation. We provide a method to determine the steady states of this system that is tractable for metabolic networks of arbitrary complexity. We demonstrate our approach in a toy model first, and then in a genome-scale metabolic network of the Chinese hamster ovary cell line, obtaining results that are in qualitative agreement with experimental observations. We derive a number of consequences from the model that are independent of parameter values. The ratio between cell density and dilution rate is an ideal control parameter to fix a steady state with desired metabolic properties. This conclusion is robust even in the presence of multi-stability, which is explained in our model by a negative feedback loop due to toxic byproduct accumulation. A complex landscape of steady states emerges from our simulations, including multiple metabolic switches, which also explain why cell-line and media benchmarks carried out in batch culture cannot be extrapolated to perfusion. On the other hand, we predict invariance laws between continuous cell cultures with different parameters. A practical consequence is that the chemostat is an ideal experimental model for large-scale high-density perfusion cultures, where the complex landscape of metabolic transitions is faithfully reproduced.


Assuntos
Genoma/genética , Genômica/métodos , Redes e Vias Metabólicas/genética , Animais , Biotecnologia , Células CHO , Técnicas de Cultura de Células , Cricetinae , Cricetulus
9.
J Immunoassay Immunochem ; 38(2): 190-201, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27636538

RESUMO

Human epidermal growth factor is a small peptide consisting of 53 amino acid residues, which stimulates cell proliferation and is associated with several human carcinomas. A simple sandwich-type ultramicroELISA assay (UMELISA), based on the advantages of high affinity reaction between streptavidin and biotin has been developed for the measurement of EGF in human serum samples. Strips coated with a high affinity monoclonal antibody directed against EGF are used as solid phase, to ensure the specificity of the assay. The EGF assay was completed in 18 hr, with a measuring range of 39-2500 pg/mL. The intra- and inter-assay coefficients of variation were 4.4-7.3% and 0-5.1%, respectively, depending on the EGF concentrations evaluated. Percentage recovery ranged from 96-104%. Regression analysis showed a good correlation with the commercially available Human EGF Immunoassay Quantikine® ELISA kit (n = 130, r = 0.92, P < 0.01). The analytical performance characteristics of our UMELISA EGF endorse its use for the quantification of EGF in human serum samples.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Fator de Crescimento Epidérmico/sangue , Microquímica/métodos , Anticorpos Monoclonais/imunologia , Fator de Crescimento Epidérmico/imunologia , Humanos , Análise de Regressão
10.
J Mol Recognit ; 28(4): 261-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25683569

RESUMO

A mutein with stronger antitumor activity and lower toxicity than wild-type human interleukin-2 (IL-2) has been recently described. The rationale behind its design was to reinforce the immunostimulatory potential through the introduction of four mutations that would selectively disrupt the interaction with the IL-2 receptor alpha chain (thought to be critical for both IL-2-driven expansion of T regulatory cells and IL-2-mediated toxic effects). Despite the successful results of the mutein in several tumor models, characterization of its interactions was still to be performed. The current work, based on phage display of IL-2-derived variants, showed the individual contribution of each mutation to the impairment of alpha chain binding. A more sensitive assay, based on the ability of phage-displayed IL-2 variants to induce proliferation of the IL-2-dependent CTLL-2 cell line, revealed differences between the mutated variants. The results validated the mutein design, highlighting the importance of the combined effects of the four mutations. The developed phage display-based platform is robust and sensitive, allows a fast comparative evaluation of multiple variants, and could be broadly used to engineer IL-2 and related cytokines, accelerating the development of cytokine-derived therapeutics.


Assuntos
Bacteriófagos/metabolismo , Interleucina-2/química , Linfotoxina-alfa/química , Proteínas Recombinantes/química , Proliferação de Células , Humanos
11.
J Immunol ; 190(12): 6230-8, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23677467

RESUMO

IL-2 has been used for the treatment of melanoma and renal cell carcinoma, but this therapy has limited efficacy and severe toxicity. Currently, it is assumed that part of the limited efficacy is due to the IL-2-driven preferential expansion of regulatory T cells, which dampen the antitumor immunity. In this study, we characterize a human IL-2 mutant with higher antitumor efficacy and lower toxicity than wild type human IL-2 (wtIL-2). The mutant differs from wtIL-2 by four mutations at the interface with the α subunit of IL-2R. The IL-2 mutant induces in vitro proliferation of CD8(+)CD44(hi) and NK1.1 cells as efficiently as does wtIL-2, but it shows a reduced capacity to induce proliferation of CD4(+)Foxp3(+) regulatory T cells. The IL-2 mutant shows a higher antimetastatic effect than does wtIL-2 in several transplantable tumor models: the experimental metastasis model of MB16F0 melanoma and the experimental and spontaneous metastasis models for the mouse pulmonary carcinoma 3LL-D1222. Relevantly, the IL-2 mutant also exhibits lower lung and liver toxicity than does wtIL-2 when used at high doses in mice. In silico simulations, using a calibrated mathematical model, predict that the properties of IL-2 mutein are a consequence of the reduction, of at least two orders of magnitude, in its affinity for the α subunit of IL-2R (CD25). The human IL-2 mutant described in the present work could be a good candidate for improving cancer therapy based on IL-2.


Assuntos
Imunoterapia/métodos , Interleucina-2/genética , Interleucina-2/imunologia , Neoplasias Experimentais/terapia , Animais , Modelos Animais de Doenças , Citometria de Fluxo , Humanos , Interleucina-2/química , Melanoma/imunologia , Melanoma/terapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Modelos Teóricos , Mutação , Neoplasias Experimentais/imunologia , Estrutura Quaternária de Proteína
12.
Int Immunol ; 24(7): 427-46, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22371423

RESUMO

Several reports in the literature have drawn a complex picture of the effect of treatments aiming to modulate IL2 activity in vivo. They seem to promote indistinctly immunity or tolerance, probably depending on the specific context, dose and timing of their application. Such complexity might derives from the dual role of IL2 on T-cell dynamics. To theoretically address the latter possibility, we develop a mathematical model for helper, regulatory and memory T-cells dynamics, which account for most well-known facts relative to their relationship with IL2. We simulate the effect of three types of therapies: IL2 injections, IL2 depletion using anti-IL2 antibodies and IL2/anti-IL2 immune complexes injection. We focus in the qualitative and quantitative conditions of dose and timing for these treatments which allow them to potentate either immunity or tolerance. Our results provide reasonable explanations for the existent pre-clinical and clinical data and further provide interesting practical guidelines to optimize the future application of these types of treatments. Particularly, our results predict that: (i) Immune complexes IL2/anti-IL2 mAbs, using mAbs which block the interaction of IL2 and CD25 (the alpha chain of IL2 receptor), is the best option to potentate immunity alone or in combination with vaccines. These complexes are optimal when a 1:2 molar ratio of mAb:IL2 is used and the mAbs have the largest possible affinity; (ii) Immune complexes IL2/anti-IL2 mAbs, using mAbs which block the interaction of IL2 and CD122 (the beta chain of IL2 receptor), are the best option to reinforce preexistent natural tolerance, for instance to prevent allograft rejection. These complexes are optimal when a 1:2 molar ratio of mAb:IL2 is used and the mAbs have intermediate affinities; (iii) mAbs anti-IL2 can be successfully used alone to treat an ongoing autoimmune disorder, promoting the re-induction of tolerance. The best strategy in this therapy is to start treatment with an initially high dose of the mAbs (one capable to induce some immune suppression) and then scales down slowly the dose of mAb in subsequent applications.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Imunoterapia , Modelos Imunológicos , Linfócitos T Reguladores/imunologia , Animais , Comunicação Celular , Simulação por Computador , Humanos , Tolerância Imunológica , Memória Imunológica , Interleucina-2/antagonistas & inibidores , Interleucina-2/imunologia , Interleucina-2/uso terapêutico , Ativação Linfocitária
13.
J Phys Chem B ; 127(26): 5764-5771, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37343227

RESUMO

The activation of T cells is typically accompanied by inhibitory mechanisms within which the programmed cell death (PD1) receptor stands out. Upon binding the ligands PDL1 and PDL2, PD1 drives T cells to an unresponsive state called exhaustion, characterized by a markedly decreased capacity to exert effector functions. For this reason, PD1 has become one of the most important targets in cancer immunotherapy. Despite the numerous studies about PD1 signaling modulation, how the PD1 signaling is activated upon the ligands' binding remains an open question. Several experimental facts suggest that the activation of the PD1-PLD1 pathway depends on the interaction with an unknown partner at the cellular membrane. In this work, we investigate the possibility that the target of PD1-PDL1 is the same PD1-PDL1 complex. We combined molecular docking with molecular dynamics and umbrella sampling simulations to explore different binding modes and assess the complexes' stability. We predicted a stable dimeric form of the extracellular domains of the PD1-PDL1 complex. This dimeric complex has an affinity comparable to the PD1-PDL1 interaction and resembles the form of a linear lattice. We proposed a new model for PD1 activation where the PD1-PDL1 dimeric form could facilitate the interaction of the intracellular domains of PD1 and the further binding and activation of the SHP2 phosphatase. This model might explain the inhibitory effect of anti-PD1/PDL1 antibodies through the prevention of the formation of the PD1-PDL1 dimers and, subsequently, the abrogation of the SHP2 phosphatase activation.


Assuntos
Simulação de Dinâmica Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Simulação de Acoplamento Molecular , Ligantes
14.
Data Brief ; 50: 109604, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37808545

RESUMO

The data for provide evidences of the multi steady state of the human cell line HEK 293 was obtained from 2 L bioreactor continuous culture. A HEK 293 cell line transfected to produce soluble HER1 receptor was used. The bioreactor was operated at three different dilution rates in sequential manner. Daily samples of culture broth were collected, a total of 85 samples were processed. Viable cell concentration and culture viability was addressing by trypan blue exclusion method using a hemocytometer. Heterologous HER1 supernatant concentration was quantified by a specific ELISA and the metabolites by mass spectrometry coupled to a liquid chromatography. The primary data were collected in excel files, where it was calculated the kinetic and other variables by using mass balance and mathematical principles. It was compared the steady states behavior each other's to find out the existence of steady states' multiplicity, taking into account the stationary phase with respect to the cell density (which means its coefficient of variation is less than 20 %). From the metabolic measurements by using Liquid Chromatography coupled to mass spectrometry (LC-MS), it was also built the data matrix with the specific rates of the 76 metabolites obtained. The data were processed and analyzed, using multivariate data asssnalysis (MVDA) to reduce the complexity and to find the main patterns present in the data. We describe also the full data of the metabolites not only for steady states but also in the time evolution, which could help others in terms of modeling and deep understanding of HEK293 metabolism, especially under different culture conditions.

15.
Alzheimers Res Ther ; 15(1): 215, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38093366

RESUMO

BACKGROUND: NeuroEPO plus is a recombinant human erythropoietin without erythropoietic activity and shorter plasma half-life due to its low sialic acid content. NeuroEPO plus prevents oxidative damage, neuroinflammation, apoptosis and cognitive deficit in an Alzheimer's disease (AD) models. The aim of this study was to assess efficacy and safety of neuroEPO plus. METHODS: This was a double-blind, randomized, placebo-controlled, phase 2-3 trial involving participants ≥ 50 years of age with mild-to-moderate AD clinical syndrome. Participants were randomized in a 1:1:1 ratio to receive 0.5 or 1.0 mg of neuroEPO plus or placebo intranasally 3 times/week for 48 weeks. The primary outcome was change in the 11-item cognitive subscale of the AD Assessment Scale (ADAS-Cog11) score from baseline to 48 weeks (range, 0 to 70; higher scores indicate greater impairment). Secondary outcomes included CIBIC+, GDS, MoCA, NPI, Activities of Daily Living Scales, cerebral perfusion, and hippocampal volume. RESULTS: A total of 174 participants were enrolled and 170 were treated (57 in neuroEPO plus 0.5 mg, 56 in neuroEPO plus 1.0 mg and 57 in placebo group). Mean age, 74.0 years; 121 (71.2%) women and 85% completed the trial. The median change in ADAS-Cog11 score at 48 weeks was -3.0 (95% CI, -4.3 to -1.7) in the 0.5 mg neuroEPO plus group, -4.0 (95% CI, -5.9 to -2.1) in the 1.0 mg neuroEPO plus group and 4.0 (95% CI, 1.9 to 6.1) in the placebo group. The difference of neuroEPO plus 0.5 mg vs. placebo was 7.0 points (95% CI, 4.5-9.5) P = 0.000 and between the neuroEPO plus 1.0 mg vs. placebo was 8.0 points (95% CI, 5.2-10.8) P = 0.000. NeuroEPO plus treatment induced a statistically significant improvement in some of clinical secondary outcomes vs. placebo including CIBIC+, GDS, MoCA, NPI, and the brain perfusion. CONCLUSIONS: Among participants with mild-moderate Alzheimer's disease clinical syndrome, neuroEPO plus improved the cognitive evaluation at 48 weeks, with a very good safety profile. Larger trials are warranted to determine the efficacy and safety of neuroEPO plus in Alzheimer's disease. TRIAL REGISTRATION: https://rpcec.sld.cu Identifier: RPCEC00000232.


Assuntos
Doença de Alzheimer , Transtornos Cognitivos , Disfunção Cognitiva , Idoso , Feminino , Humanos , Masculino , Atividades Cotidianas , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/psicologia , Transtornos Cognitivos/tratamento farmacológico , Método Duplo-Cego , Resultado do Tratamento
16.
Curr Pharm Des ; 29(44): 3579-3588, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38083887

RESUMO

BACKGROUND: In a previous work, an IL-2Rßγ biased mutant derived from human IL-2 and called IL-2noα, was designed and developed. Greater antitumor effects and lower toxicity were observed compared to native IL-2. Nevertheless, mutein has some disadvantages, such as a very short half-life of about 9-12 min, propensity for aggregation, and solubility problems. OBJECTIVE: In this study, PEGylation was employed to improve the pharmacokinetic and antitumoral properties of the novel protein. METHODS: Pegylated IL-2noα was characterized by polyacrylamide gel electrophoresis, size exclusion chromatography, in vitro cell proliferation and in vivo cell expansion bioassays, and pharmacokinetic and antitumor studies. RESULTS: IL-2noα-conjugates with polyethylene glycol (PEG) of 1.2 kDa, 20 kDa, and 40 kDa were obtained by classical acylation. No significant changes in the secondary and tertiary structures of the modified protein were detected. A decrease in biological activity in vitro and a significant improvement in half-life were observed, especially for IL-2noα-PEG20K. PEGylation of IL-2noα with PEG20K did not affect the capacity of the mutant to induce preferential expansion of T effector cells over Treg cells. This pegylated IL-2noα exhibited a higher antimetastatic effect compared to unmodified IL-2noα in the B16F0 experimental metastases model, even when administered at lower doses and less frequently. CONCLUSION: PEG20K was selected as the best modification strategy, to improve the blood circulation time of the IL-2noα with a superior antimetastatic effect achieved with lower doses.


Assuntos
Interleucina-2 , Proteínas , Humanos , Polietilenoglicóis/química
17.
Commun Biol ; 6(1): 828, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558752

RESUMO

Interleukin-2 (IL-2) engineered versions, with biased immunological functions, have emerged from yeast display and rational design. Here we reshaped the human IL-2 interface with the IL-2 receptor beta chain through the screening of phage-displayed libraries. Multiple beta super-binders were obtained, having increased receptor binding ability and improved developability profiles. Selected variants exhibit an accumulation of negatively charged residues at the interface, which provides a better electrostatic complementarity to the beta chain, and faster association kinetics. These findings point to mechanistic differences with the already reported superkines, characterized by a conformational switch due to the rearrangement of the hydrophobic core. The molecular bases of the favourable developability profile were tracked to a single residue: L92. Recombinant Fc-fusion proteins including our variants are superior to those based on H9 superkine in terms of expression levels in mammalian cells, aggregation resistance, stability, in vivo enhancement of immune effector responses, and anti-tumour effect.


Assuntos
Evolução Molecular Direcionada , Subunidade beta de Receptor de Interleucina-2 , Interleucina-2 , Biblioteca de Peptídeos , Humanos , Subunidade beta de Receptor de Interleucina-2/química , Interleucina-2/química , Interleucina-2/genética , Interleucina-2/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Evolução Molecular Direcionada/métodos , Domínios Proteicos , Animais , Camundongos , Linhagem Celular Tumoral
18.
J Theor Biol ; 295: 37-46, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22100422

RESUMO

We develop a stochastic model to study the specific response of the immune system. The model is based on the dynamical interaction between Regulatory and Effector CD4+ T cells in the presence of Antigen Presenting Cells inside a lymphatic node. At a mean field level the model predicts the existence of different regimes where active, tolerant, or cyclic immune responses are possible. To study the model beyond mean field and to understand the specific responses of the immune system we use the Linear Noise Approximation and show that fluctuations due to finite size effects may strongly alter the mean field scenario. Moreover, it was found that the existence of a certain characteristic frequency for the fluctuations. All the analytical predictions were compared with simulations using Gillespie's algorithm.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Modelos Imunológicos , Algoritmos , Células Apresentadoras de Antígenos/imunologia , Humanos , Tolerância Imunológica/imunologia , Linfonodos/imunologia , Processos Estocásticos , Linfócitos T Reguladores/imunologia
19.
J Phys Chem B ; 126(7): 1441-1446, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35167293

RESUMO

The activation of T cells is normally accompanied by inhibitory mechanisms within which the PD1 receptor stands out. PD1 drives T cells to an unresponsive state called exhaustion, characterized by a markedly decreased capacity to exert effector functions upon binding the ligands PDL1 and PDL2. For this reason, PD1 has become one of the most important targets in cancer immunotherapy. Despite the numerous studies about PD1 signaling modulation, how the PD1 signaling pathway is activated upon the ligands' binding remains an open question. In this work, we used molecular dynamics simulations to assess the differences of the PD1 motion in the free state and in complex with the ligands. We found that, in both human and murine systems, the binding of PDL1 and PDL2 stabilizes the conformation of the FG loop similarly. This result, combined with the conservation of the FG loop residues across species, suggests that the conformation of the FG loop is somehow related to the signaling process. We also found a high similarity between the PD1-PDL1 structures with the variable region of an antibody structure, where the FG loop occupies a similar position to the CDR3 light chain.


Assuntos
Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Animais , Antígeno B7-H1/química , Antígeno B7-H1/metabolismo , Humanos , Ligantes , Camundongos , Conformação Molecular , Transdução de Sinais
20.
Front Immunol ; 13: 974188, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059465

RESUMO

High doses of interleukin-2 (IL-2) have been used for the treatment of melanoma and renal cell carcinoma, but this therapy has limited efficacy, with a ~15% response rate. Remarkably, 7%-9% of patients achieve complete or long-lasting responses. Many patients treated with IL-2 experienced an expansion of regulatory T cells (Tregs), specifically the expansion of ICOS+ highly suppressive Tregs, which correlate with worse clinical outcomes. This partial efficacy together with the high toxicity associated with the therapy has limited the use of IL-2-based therapy. Taking into account the understanding of IL-2 structure, signaling, and in vivo functions, some efforts to improve the cytokine properties are currently under study. In previous work, we described an IL-2 mutein with higher antitumor activity and less toxicity than wtIL-2. Mutein was in silico designed for losing the binding capacity to CD25 and for preferential stimulation of effector cells CD8+ and NK cells but not Tregs. Mutein induces a higher anti-metastatic effect than wtIL-2, but the extent of the in vivo antitumor activity was still unexplored. In this work, it is shown that mutein induces a strong antitumor effect on four primary tumor models, being effective even in those models where wtIL-2 does not work. Furthermore, mutein can change the in vivo balance between Tregs and T CD8+ memory/activated cells toward immune activation, in both healthy and tumor-bearing mice. This change reaches the tumor microenvironment and seems to be the major explanation for mutein efficacy in vivo.


Assuntos
Linfócitos T CD8-Positivos , Interleucina-2 , Neoplasias , Linfócitos T Reguladores , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linfócitos T CD8-Positivos/imunologia , Imunoterapia , Interleucina-2/genética , Interleucina-2/imunologia , Melanoma , Camundongos , Mutação , Neoplasias/tratamento farmacológico , Linfócitos T Reguladores/imunologia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA