Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Med Genet ; 61(5): 469-476, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38458756

RESUMO

BACKGROUND: Marfan syndrome (MFS) is a multisystem disease with a unique combination of skeletal, cardiovascular and ocular features. Geleophysic/acromicric dysplasias (GPHYSD/ACMICD), characterised by short stature and extremities, are described as 'the mirror image' of MFS. The numerous FBN1 pathogenic variants identified in MFS are located all along the gene and lead to the same final pathogenic sequence. Conversely, in GPHYSD/ACMICD, the 28 known heterozygous FBN1 pathogenic variants all affect exons 41-42 encoding TGFß-binding protein-like domain 5 (TB5). METHODS: Since 1996, more than 5000 consecutive probands have been referred nationwide to our laboratory for molecular diagnosis of suspected MFS. RESULTS: We identified five MFS probands carrying distinct heterozygous pathogenic in-frame variants affecting the TB5 domain of FBN1. The clinical data showed that the probands displayed a classical form of MFS. Strikingly, one missense variant affects an amino acid that was previously involved in GPHYSD. CONCLUSION: Surprisingly, pathogenic variants in the TB5 domain of FBN1 can lead to two opposite phenotypes: GPHYSD/ACMICD and MFS, suggesting the existence of different pathogenic sequences with the involvement of tissue specificity. Further functional studies are ongoing to determine the precise role of this domain in the physiopathology of each disease.


Assuntos
Doenças do Desenvolvimento Ósseo , Deformidades Congênitas dos Membros , Síndrome de Marfan , Humanos , Doenças do Desenvolvimento Ósseo/genética , Fibrilina-1/genética , Síndrome de Marfan/genética , Síndrome de Marfan/patologia , Mutação
2.
J Med Genet ; 61(2): 109-116, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-37734846

RESUMO

BACKGROUND: Weill-Marchesani syndrome (WMS) belongs to the group of acromelic dysplasias, defined by short stature, brachydactyly and joint limitations. WMS is characterised by specific ophthalmological abnormalities, although cardiovascular defects have also been reported. Monoallelic variations in FBN1 are associated with a dominant form of WMS, while biallelic variations in ADAMTS10, ADAMTS17 and LTBP2 are responsible for a recessive form of WMS. OBJECTIVE: Natural history description of WMS and genotype-phenotype correlation establishment. MATERIALS AND METHODS: Retrospective multicentre study and literature review. INCLUSION CRITERIA: clinical diagnosis of WMS with identified pathogenic variants. RESULTS: 61 patients were included: 18 individuals from our cohort and 43 patients from literature. 21 had variants in ADAMTS17, 19 in FBN1, 19 in ADAMTS10 and 2 in LTBP2. All individuals presented with eye anomalies, mainly spherophakia (42/61) and ectopia lentis (39/61). Short stature was present in 73% (from -2.2 to -5.5 SD), 10/61 individuals had valvulopathy. Regarding FBN1 variants, patients with a variant located in transforming growth factor (TGF)-ß-binding protein-like domain 5 (TB5) domain were significantly smaller than patients with FBN1 variant outside TB5 domain (p=0.0040). CONCLUSION: Apart from the ophthalmological findings, which are mandatory for the diagnosis, the phenotype of WMS seems to be more variable than initially described, partially explained by genotype-phenotype correlation.


Assuntos
Nanismo , Anormalidades do Olho , Síndrome de Weill-Marchesani , Humanos , Síndrome de Weill-Marchesani/genética , Síndrome de Weill-Marchesani/diagnóstico , Síndrome de Weill-Marchesani/patologia , Nanismo/genética , Fenótipo , Estudos de Associação Genética , Fibrilina-1/genética , Proteínas de Ligação a TGF-beta Latente/genética , Estudos Multicêntricos como Assunto
3.
Hum Mol Genet ; 31(22): 3777-3788, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-35660865

RESUMO

Mutations in the fibrillin-1 (FBN1) gene are responsible for the autosomal dominant form of geleophysic dysplasia (GD), which is characterized by short stature and extremities, thick skin and cardiovascular disease. All known FBN1 mutations in patients with GD are localized within the region encoding the transforming growth factor-ß binding protein-like 5 (TB5) domain of this protein. Herein, we generated a knock-in mouse model, Fbn1Y1698C by introducing the p.Tyr1696Cys mutation from a patient with GD into the TB5 domain of murine Fbn1 to elucidate the specific role of this domain in endochondral ossification. We found that both Fbn1Y1698C/+ and Fbn1Y1698C/Y1698C mice exhibited a reduced stature reminiscent of the human GD phenotype. The Fbn1 point mutation introduced in these mice affected the growth plate formation owing to abnormal chondrocyte differentiation such that mutant chondrocytes failed to establish a dense microfibrillar network composed of FBN1. This original Fbn1 mutant mouse model offers new insight into the pathogenic events underlying GD. Our findings suggest that the etiology of GD involves the dysregulation of the extracellular matrix composed of an abnormal FBN1 microfibril network impacting the differentiation of the chondrocytes.


Assuntos
Doenças do Desenvolvimento Ósseo , Fibrilina-1 , Deformidades Congênitas dos Membros , Síndrome de Marfan , Animais , Humanos , Camundongos , Doenças do Desenvolvimento Ósseo/metabolismo , Fibrilina-1/genética , Deformidades Congênitas dos Membros/genética , Síndrome de Marfan/genética , Mutação , Osteogênese/genética
4.
Genet Med ; 23(5): 865-871, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33495528

RESUMO

PURPOSE: Individuals with mosaic pathogenic variants in the FBN1 gene are mainly described in the course of familial screening. In the literature, almost all these mosaic individuals are asymptomatic. In this study, we report the experience of our team on more than 5,000 Marfan syndrome (MFS) probands. METHODS: Next-generation sequencing (NGS) capture technology allowed us to identify five cases of MFS probands who harbored a mosaic pathogenic variant in the FBN1 gene. RESULTS: These five sporadic mosaic probands displayed classical features usually seen in Marfan syndrome. Combined with the results of the literature, these rare findings concerned both single-nucleotide variants and copy-number variations. CONCLUSION: This underestimated finding should not be overlooked in the molecular diagnosis of MFS patients and warrants an adaptation of the parameters used in bioinformatics analyses. The five present cases of symptomatic MFS probands harboring a mosaic FBN1 pathogenic variant reinforce the fact that apparently asymptomatic mosaic parents should have a complete clinical examination and a regular cardiovascular follow-up. We advise that individuals with a typical MFS for whom no single-nucleotide pathogenic variant or exon deletion/duplication was identified should be tested by NGS capture panel with an adapted variant calling analysis.


Assuntos
Síndrome de Marfan , Éxons , Fibrilina-1/genética , Fibrilinas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Síndrome de Marfan/diagnóstico , Síndrome de Marfan/genética , Mosaicismo , Mutação
5.
Genet Med ; 23(1): 111-122, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32855533

RESUMO

PURPOSE: Thoracic aortic aneurysm and dissection (TAAD) is a life-threatening disease with often unrecognized inherited forms. We sought to identify novel pathogenic variants associated with autosomal dominant inheritance of TAAD. METHODS: We analyzed exome sequencing data from 35 French TAAD families and performed next-generation sequencing capture panel of genes in 1114 unrelated TAAD patients. Functional effects of pathogenic variants identified were validated in cell, tissue, and mouse models. RESULTS: We identified five functional variants in THSD4 of which two heterozygous variants lead to a premature termination codon. THSD4 encodes ADAMTSL6 (member of the ADAMTS/L superfamily), a microfibril-associated protein that promotes fibrillin-1 matrix assembly. The THSD4 variants studied lead to haploinsufficiency or impaired assembly of fibrillin-1 microfibrils. Thsd4+/- mice showed progressive dilation of the thoracic aorta. Histologic examination of aortic samples from a patient carrying a THSD4 variant and from Thsd4+/- mice, revealed typical medial degeneration and diffuse disruption of extracellular matrix. CONCLUSION: These findings highlight the role of ADAMTSL6 in aortic physiology and TAAD pathogenesis. They will improve TAAD management and help develop new targeted therapies.


Assuntos
Aneurisma da Aorta Torácica , Dissecção Aórtica , Proteínas ADAM , Dissecção Aórtica/genética , Animais , Aneurisma da Aorta Torácica/genética , Exoma/genética , Fibrilina-1/genética , Humanos , Camundongos
6.
Hum Genet ; 139(4): 461-472, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31980905

RESUMO

SKI pathogenic variations are associated with Shprintzen-Goldberg Syndrome (SGS), a rare systemic connective tissue disorder characterized by craniofacial, skeletal and cardiovascular features. So far, the clinical description, including intellectual disability, has been relatively homogeneous, and the known pathogenic variations were located in two different hotspots of the SKI gene. In the course of diagnosing Marfan syndrome and related disorders, we identified nine sporadic probands (aged 2-47 years) carrying three different likely pathogenic or pathogenic variants in the SKI gene affecting the same amino acid (Thr180). Seven of these molecular events were confirmed de novo. All probands displayed a milder morphological phenotype with a marfanoid habitus that did not initially lead to a clinical diagnosis of SGS. Only three of them had learning disorders, and none had intellectual disability. Six out of nine presented thoracic aortic aneurysm, which led to preventive surgery in the oldest case. This report extends the phenotypic spectrum of variants identified in the SKI gene. We describe a new mutational hotspot associated with a marfanoid syndrome with no intellectual disability. Cardiovascular involvement was confirmed in a significant number of cases, highlighting the importance of accurately diagnosing SGS and ensuring appropriate medical treatment and follow-up.


Assuntos
Aracnodactilia , Craniossinostoses , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Síndrome de Marfan , Mutação , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Adolescente , Adulto , Aracnodactilia/diagnóstico , Aracnodactilia/genética , Aracnodactilia/metabolismo , Criança , Pré-Escolar , Craniossinostoses/diagnóstico , Craniossinostoses/genética , Craniossinostoses/metabolismo , Feminino , Humanos , Masculino , Síndrome de Marfan/diagnóstico , Síndrome de Marfan/genética , Síndrome de Marfan/metabolismo , Pessoa de Meia-Idade , Patologia Molecular
7.
FASEB J ; 33(2): 2707-2718, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30303737

RESUMO

Mutations in the a disintegrin and metalloproteinase with thrombospondin motif-like 2 ( ADAMTSL2) gene are responsible for the autosomal recessive form of geleophysic dysplasia, which is characterized by short stature, short extremities, and skeletal abnormalities. However, the exact function of ADAMTSL2 is unknown. To elucidate the role of this protein in skeletal development, we generated complementary knockout (KO) mouse models with either total or chondrocyte Adamtsl2 deficiency. We observed that the Adamtsl2 KO mice displayed skeletal abnormalities reminiscent of the human phenotype. Adamtsl2 deletion affected the growth plate formation with abnormal differentiation and proliferation of chondrocytes. In addition, a TGF-ß signaling impairment in limbs lacking Adamtsl2 was demonstrated. Further investigations revealed that Adamtsl2 KO chondrocytes failed to establish a microfibrillar network composed by fibrillin1 and latent TGF-ß binding protein 1 fibrils. Chondrocyte Adamtsl2 KO mice also exhibited dwarfism. These studies uncover the function of Adamtsl2 in the maintenance of the growth plate ECM by modulating the microfibrillar network.-Delhon, L., Mahaut, C., Goudin, N., Gaudas, E., Piquand, K., Le Goff, W., Cormier-Daire, V., Le Goff, C. Impairment of chondrogenesis and microfibrillar network in Adamtsl2 deficiency.


Assuntos
Proteínas ADAMTS/fisiologia , Doenças do Desenvolvimento Ósseo/etiologia , Condrogênese , Nanismo/etiologia , Proteínas da Matriz Extracelular/fisiologia , Microfibrilas/patologia , Animais , Doenças do Desenvolvimento Ósseo/metabolismo , Doenças do Desenvolvimento Ósseo/patologia , Nanismo/metabolismo , Nanismo/patologia , Heterozigoto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microfibrilas/metabolismo , Mutação , Fenótipo , Fator de Crescimento Transformador beta/metabolismo
8.
Am J Hum Genet ; 99(2): 407-13, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27426734

RESUMO

Cardiospondylocarpofacial (CSCF) syndrome is characterized by growth retardation, dysmorphic facial features, brachydactyly with carpal-tarsal fusion and extensive posterior cervical vertebral synostosis, cardiac septal defects with valve dysplasia, and deafness with inner ear malformations. Whole-exome sequencing identified heterozygous MAP3K7 mutations in six distinct CSCF-affected individuals from four families and ranging in age from 5 to 37 years. MAP3K7 encodes transforming growth factor ß (TGF-ß)-activated kinase 1 (TAK1), which is involved in the mitogen-activated protein kinase (MAPK)-p38 signaling pathway. MAPK-p38 signaling was markedly altered when expression of non-canonical TGF-ß-driven target genes was impaired. These findings support the loss of transcriptional control of the TGF-ß-MAPK-p38 pathway in fibroblasts obtained from affected individuals. Surprisingly, although TAK1 is located at the crossroad of inflammation, immunity, and cancer, this study reports MAP3K7 mutations in a developmental disorder affecting mainly cartilage, bone, and heart.


Assuntos
Ossos do Carpo/anormalidades , Vértebras Cervicais/anormalidades , Perda Auditiva Condutiva/genética , Heterozigoto , MAP Quinase Quinase Quinases/genética , Insuficiência da Valva Mitral/genética , Mutação/genética , Ossos do Tarso/anormalidades , Anormalidades Múltiplas , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Fibroblastos , Regulação da Expressão Gênica , Perda Auditiva Bilateral , Humanos , Interleucina-1beta/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Osteosclerose , Síndrome , Fator de Crescimento Transformador beta/metabolismo , Adulto Jovem , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Arterioscler Thromb Vasc Biol ; 38(8): 1913-1925, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29930009

RESUMO

Objective- Erdheim-Chester disease (ECD) is a rare non-Langerhans cell histiocytosis characterized by the infiltration of multiple tissues with lipid-laden histiocytes. Cardiovascular involvement is frequent in ECD and leads to a severe prognosis. The objective of this study was to determine whether an alteration of lipid metabolism participates in the lipid accumulation in histiocytes and the cardiovascular involvement in ECD. Approach and Results- An analysis of plasma lipid levels indicated that male ECD patients carrying the BRAFV600E (B-Raf proto-oncogene, serine/threonine kinase) mutation exhibited hypoalphalipoproteinemia, as demonstrated by low plasma HDL-C (high-density lipoprotein cholesterol) levels. Capacity of sera from male BRAFV600E ECD patients to mediate free cholesterol efflux from human macrophages was reduced compared with control individuals. Cardiovascular involvement was detected in 84% of the ECD patients, and we reported that the presence of the BRAFV600E mutation and hypoalphalipoproteinemia is an independent determinant of aortic infiltration in ECD. Phenotyping of blood CD14+ cells, the precursors of histiocytes, enabled the identification of a specific inflammatory signature associated with aortic infiltration which was partially affected by the HDL phenotype. Finally, the treatment with vemurafenib, an inhibitor of the BRAFV600E mutation, restored the defective sera cholesterol efflux capacity and reduced the aortic infiltration. Conclusions- Our findings indicate that hypoalphalipoproteinemia in male ECD patients carrying the BRAFV600E mutation favors the formation of lipid-laden histiocytes. In addition, we identified the BRAF status and the HDL phenotype as independent determinants of the aortic involvement in ECD with a potential role of HDL in modulating the infiltration of blood CD14+ cells into the aorta.


Assuntos
Aorta/metabolismo , Doenças da Aorta/genética , HDL-Colesterol/sangue , Doença de Erdheim-Chester/genética , Histiócitos/metabolismo , Hipoalfalipoproteinemias/genética , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Aorta/efeitos dos fármacos , Aorta/patologia , Doenças da Aorta/tratamento farmacológico , Doenças da Aorta/enzimologia , Biomarcadores/sangue , Estudos de Casos e Controles , Doença de Erdheim-Chester/sangue , Doença de Erdheim-Chester/diagnóstico , Doença de Erdheim-Chester/tratamento farmacológico , Feminino , Predisposição Genética para Doença , Histiócitos/efeitos dos fármacos , Histiócitos/patologia , Humanos , Hipoalfalipoproteinemias/sangue , Hipoalfalipoproteinemias/diagnóstico , Hipoalfalipoproteinemias/tratamento farmacológico , Receptores de Lipopolissacarídeos/sangue , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Fenótipo , Inibidores de Proteínas Quinases/uso terapêutico , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Fatores de Risco , Fatores Sexuais , Células THP-1 , Vemurafenib/uso terapêutico , Adulto Jovem
10.
J Med Genet ; 53(7): 457-64, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27068007

RESUMO

BACKGROUND: Acromelic dysplasias are a group of disorders characterised by short stature, brachydactyly, limited joint extension and thickened skin and comprises acromicric dysplasia (AD), geleophysic dysplasia (GD), Myhre syndrome and Weill-Marchesani syndrome. Mutations in several genes have been identified for these disorders (including latent transforming growth factor ß (TGF-ß)-binding protein-2 (LTBP2), ADAMTS10, ADAMSTS17 and fibrillin-1 (FBN1) for Weill-Marchesani syndrome, ADAMTSL2 for recessive GD and FBN1 for AD and dominant GD), encoding proteins involved in the microfibrillar network. However, not all cases have mutations in these genes. METHODS: Individuals negative for mutations in known acromelic dysplasia genes underwent whole exome sequencing. RESULTS: A heterozygous missense mutation (exon 14: c.2087C>G: p.Ser696Cys) in latent transforming growth factor ß (TGF-ß)-binding protein-3 (LTBP3) was identified in a dominant AD family. Two distinct de novo heterozygous LTPB3 mutations were also identified in two unrelated GD individuals who had died in early childhood from respiratory failure-a donor splice site mutation (exon 12 c.1846+5G>A) and a stop-loss mutation (exon 28: c.3912A>T: p.1304*Cysext*12). CONCLUSIONS: The constellation of features in these AD and GD cases, including postnatal growth retardation of long bones and lung involvement, is reminiscent of the null ltbp3 mice phenotype. We conclude that LTBP3 is a novel component of the microfibrillar network involved in the acromelic dysplasia spectrum.


Assuntos
Doenças do Desenvolvimento Ósseo/genética , Proteínas de Ligação a TGF-beta Latente/genética , Deformidades Congênitas dos Membros/genética , Mutação de Sentido Incorreto/genética , Exoma/genética , Éxons/genética , Fibrilina-1/genética , Heterozigoto , Humanos , Proteínas dos Microfilamentos/genética , Mutação , Fenótipo , Fator de Crescimento Transformador beta/genética , Síndrome de Weill-Marchesani/genética
11.
Nat Genet ; 40(9): 1119-23, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18677313

RESUMO

Geleophysic dysplasia is an autosomal recessive disorder characterized by short stature, brachydactyly, thick skin and cardiac valvular anomalies often responsible for an early death. Studying six geleophysic dysplasia families, we first mapped the underlying gene to chromosome 9q34.2 and identified five distinct nonsense and missense mutations in ADAMTSL2 (a disintegrin and metalloproteinase with thrombospondin repeats-like 2), which encodes a secreted glycoprotein of unknown function. Functional studies in HEK293 cells showed that ADAMTSL2 mutations lead to reduced secretion of the mutated proteins, possibly owing to the misfolding of ADAMTSL2. A yeast two-hybrid screen showed that ADAMTSL2 interacts with latent TGF-beta-binding protein 1. In addition, we observed a significant increase in total and active TGF-beta in the culture medium as well as nuclear localization of phosphorylated SMAD2 in fibroblasts from individuals with geleophysic dysplasia. These data suggest that ADAMTSL2 mutations may lead to a dysregulation of TGF-beta signaling and may be the underlying mechanism of geleophysic dysplasia.


Assuntos
Anormalidades Múltiplas/genética , Proteínas da Matriz Extracelular/genética , Transtornos do Crescimento/genética , Valvas Cardíacas/anormalidades , Fator de Crescimento Transformador beta/metabolismo , Disponibilidade Biológica , Linhagem Celular , Criança , Pré-Escolar , Deformidades Congênitas da Mão/genética , Cardiopatias Congênitas/genética , Humanos , Mutação
12.
Am J Hum Genet ; 90(4): 740-5, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22464250

RESUMO

Acrodysostosis is a rare autosomal-dominant condition characterized by facial dysostosis, severe brachydactyly with cone-shaped epiphyses, and short stature. Moderate intellectual disability and resistance to multiple hormones might also be present. Recently, a recurrent mutation (c.1102C>T [p.Arg368*]) in PRKAR1A has been identified in three individuals with acrodysostosis and resistance to multiple hormones. After studying ten unrelated acrodysostosis cases, we report here de novo PRKAR1A mutations in five out of the ten individuals (we found c.1102C>T [p.Arg368(∗)] in four of the ten and c.1117T>C [p.Tyr373His] in one of the ten). We performed exome sequencing in two of the five remaining individuals and selected phosphodiesterase 4D (PDE4D) as a candidate gene. PDE4D encodes a class IV cyclic AMP (cAMP)-specific phosphodiesterase that regulates cAMP concentration. Exome analysis detected heterozygous PDE4D mutations (c.673C>A [p.Pro225Thr] and c.677T>C [p.Phe226Ser]) in these two individuals. Screening of PDE4D identified heterozygous mutations (c.568T>G [p.Ser190Ala] and c.1759A>C [p.Thr587Pro]) in two additional acrodysostosis cases. These mutations occurred de novo in all four cases. The four individuals with PDE4D mutations shared common clinical features, namely characteristic midface and nasal hypoplasia and moderate intellectual disability. Metabolic screening was normal in three of these four individuals. However, resistance to parathyroid hormone and thyrotropin was consistently observed in the five cases with PRKAR1A mutations. Finally, our study further supports the key role of the cAMP signaling pathway in skeletogenesis.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Disostoses/genética , Exoma/genética , Deficiência Intelectual/genética , Mutação , Osteocondrodisplasias/genética , Análise de Sequência de DNA , Adolescente , Adulto , Sequência de Bases , Criança , Pré-Escolar , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Feminino , Humanos , Masculino , Dados de Sequência Molecular , Hormônio Paratireóideo/metabolismo , Transdução de Sinais/genética , Tireotropina/metabolismo , Adulto Jovem
13.
Am J Hum Genet ; 89(1): 7-14, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21683322

RESUMO

Geleophysic (GD) and acromicric dysplasia (AD) belong to the acromelic dysplasia group and are both characterized by severe short stature, short extremities, and stiff joints. Although AD has an unknown molecular basis, we have previously identified ADAMTSL2 mutations in a subset of GD patients. After exome sequencing in GD and AD cases, we selected fibrillin 1 (FBN1) as a candidate gene, even though mutations in this gene have been described in Marfan syndrome, which is characterized by tall stature and arachnodactyly. We identified 16 heterozygous FBN1 mutations that are all located in exons 41 and 42 and encode TGFß-binding protein-like domain 5 (TB5) of FBN1 in 29 GD and AD cases. Microfibrillar network disorganization and enhanced TGFß signaling were consistent features in GD and AD fibroblasts. Importantly, a direct interaction between ADAMTSL2 and FBN1 was demonstrated, suggesting a disruption of this interaction as the underlying mechanism of GD and AD phenotypes. Although enhanced TGFß signaling caused by FBN1 mutations can trigger either Marfan syndrome or GD and AD, our findings support the fact that TB5 mutations in FBN1 are responsible for short stature phenotypes.


Assuntos
Doenças do Desenvolvimento Ósseo/genética , Nanismo/genética , Anormalidades do Olho/genética , Deformidades Congênitas dos Membros/genética , Proteínas dos Microfilamentos/genética , Mutação , Adolescente , Adulto , Criança , Pré-Escolar , Tecido Conjuntivo/anormalidades , Análise Mutacional de DNA , Éxons , Proteínas da Matriz Extracelular/metabolismo , Fibrilina-1 , Fibrilinas , Imunofluorescência , Heterozigoto , Humanos , Corpos de Inclusão/genética , Síndrome de Marfan/genética , Microfibrilas/ultraestrutura , Proteínas dos Microfilamentos/metabolismo , Pessoa de Meia-Idade , Fenótipo , Estrutura Terciária de Proteína , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Adulto Jovem
14.
Am J Med Genet A ; 164A(2): 331-7, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24339047

RESUMO

UNLABELLED: Acromicric dysplasia (AD) is an autosomal dominant disorder characterized by short stature, short extremities, stiff joint and skeleton features including brachymetacarpia, cone-shaped epiphyses, internal notch of the femoral head, and delayed bone age. Recently, we identified fibrillin 1 (FBN1) as the disease gene of AD. The aim of our study was to further describe the long-term follow up of AD patients with an emphasis on orthopedic management. Nine patients with FBN1 mutations were included in the study ranging in age from 5.5 to 64 years. For all, detailed clinical and radiological data were available. RESULTS: Birth parameters were always normal and patients progressively developed short stature <-3 SD. Carpal tunnel syndrome was observed in four patients. We found discrepancy between the carpal bone age and the radius and ulna epiphysis bone ages, a variable severity of hip dysplasia with acetabular dysplasia, epiphyseal and metaphyseal femoral dysplasia resembling Legg-Perthes-Calvé disease and variable pelvic anteversion and hyperlordosis. Orthopedic surgery was required in two patients for hip dysplasia, in one for limb lengthening and in three for carpal tunnel syndrome. Our observations expand the AD phenotype and emphasize the importance of regular orthopedic survey.


Assuntos
Doenças do Desenvolvimento Ósseo/cirurgia , Deformidades Congênitas dos Membros/cirurgia , Procedimentos Ortopédicos , Adolescente , Adulto , Doenças do Desenvolvimento Ósseo/diagnóstico , Doenças do Desenvolvimento Ósseo/genética , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Criança , Pré-Escolar , Feminino , Fibrilina-1 , Fibrilinas , Seguimentos , Heterozigoto , Humanos , Deformidades Congênitas dos Membros/diagnóstico , Deformidades Congênitas dos Membros/genética , Masculino , Proteínas dos Microfilamentos/genética , Pessoa de Meia-Idade , Mutação , Ortopedia , Radiografia , Adulto Jovem
15.
Hum Mutat ; 34(1): 88-92, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22965468

RESUMO

Floating-Harbor syndrome (FHS) is a rare disorder characterized by short stature, delayed bone age, speech delay, and dysmorphic facial features. We report here the molecular analysis of nine cases, fulfilling the diagnostic criteria for FHS. Using exome sequencing, we identified SRCAP as the disease gene in two cases and subsequently found SRCAP truncating mutations in 6/9 cases. All mutations occurred de novo and were located in exon 34, in accordance with the recent report of Hood et al. However, the absence of SRCAP mutations in 3/9 cases supported genetic heterogeneity of FH syndrome. Importantly, no major clinical differences were observed supporting clinical homogeneity in this series of FHS patients.


Assuntos
Anormalidades Múltiplas/genética , Adenosina Trifosfatases/genética , Anormalidades Craniofaciais/genética , Éxons/genética , Transtornos do Crescimento/genética , Comunicação Interventricular/genética , Mutação , Adulto , Criança , Análise Mutacional de DNA , Feminino , Heterogeneidade Genética , Predisposição Genética para Doença/genética , Humanos , Masculino
16.
Hum Mol Genet ; 20(R2): R163-7, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21880666

RESUMO

ADAMTS designates a family of 19 secreted enzymes, whose the first member ADAMTS1 was described in 1997. The ADAMTS family has a role in extracellular matrix degradation and turn over and has previously been involved in various human biological processes, including connective tissue structure, cancer, coagulation, arthritis, angiogenesis and cell migration. More recently, the ADAMTS(L) family has been described, sharing the same ancillary domain but distinct by the absence of any enzyme activity. Mutations in ADAMTS13, ADAMTS2, ADAMTS10, ADAMTS17, ADAMTSL2 and ADAMTSL4 have been identified in distinct human genetic disorders ranging from thrombotic thrombocytopenic purpura to acromelic dysplasia. The aim of our review was to emphasize the role of this family in the extracellular matrix based on human phenotypes so far identified in relation with ADAMTS(L) mutations.


Assuntos
Proteínas ADAM/genética , Doenças Genéticas Inatas/enzimologia , Família Multigênica , Proteínas ADAM/metabolismo , Animais , Doenças Genéticas Inatas/genética , Humanos
17.
Hum Mutat ; 33(8): 1261-6, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22539336

RESUMO

Desbuquois dysplasia (DD) is characterized by antenatal and postnatal short stature, multiple dislocations, and advanced carpal ossification. Two forms have been distinguished on the basis of the presence (type 1) or the absence (type 2) of characteristic hand anomalies. We have identified mutations in calcium activated nucleotidase 1 gene (CANT1) in DD type 1. Recently, CANT1 mutations have been reported in the Kim variant of DD, characterized by short metacarpals and elongated phalanges. DD has overlapping features with spondyloepiphyseal dysplasia with congenital joint dislocations (SDCD) due to Carbohydrate (chondroitin 6) Sulfotransferase 3 (CHST3) mutations. We screened CANT1 and CHST3 in 38 DD cases (6 type 1 patients, 1 Kim variant, and 31 type 2 patients) and found CANT1 mutations in all DD type 1 cases, the Kim variant and in one atypical DD type 2 expanding the clinical spectrum of hand anomalies observed with CANT1 mutations. We also identified in one DD type 2 case CHST3 mutation supporting the phenotype overlap with SDCD. To further define function of CANT1, we studied proteoglycan synthesis in CANT1 mutated patient fibroblasts, and found significant reduced GAG synthesis in presence of ß-D-xyloside, suggesting that CANT1 plays a role in proteoglycan metabolism.


Assuntos
Nucleotidases/metabolismo , Proteoglicanas/metabolismo , Células Cultivadas , Cromatografia em Gel , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/metabolismo , Nanismo/genética , Nanismo/metabolismo , Glicosídeos/metabolismo , Humanos , Instabilidade Articular/genética , Instabilidade Articular/metabolismo , Mutação , Nucleotidases/genética , Ossificação Heterotópica/genética , Ossificação Heterotópica/metabolismo , Polidactilia/genética , Polidactilia/metabolismo , Sulfotransferases , Carboidrato Sulfotransferases
18.
Am J Med Genet C Semin Med Genet ; 160C(3): 145-53, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22791552

RESUMO

The acromelic dysplasia group is characterized by short stature, short hands and feet, stiff joint, and "muscular" build. Four disorders can now be ascribed to this group, namely Weill-Marchesani syndrome (WMS), geleophysic dysplasia (GD), acromicric dysplasia (AD), and Myhre syndrome (MS). Although closely similar, they can be distinguished by subtle clinical features and their pattern inheritance. WMS is characterized by the presence of dislocation of microspherophakia and has autosomal dominant or recessive mode of inheritance. GD is the more severe one, with a progressive cardiac valvular thickening, tracheal stenosis, bronchopulmonary insufficiency, often leading to an early death. AD has an autosomal dominant mode of inheritance, distinct facial and skeleton features (a hoarse voice and internal notch of the femoral head). Finally, MS is sporadic, characterized by prognathism, deafness, developmental delay, thickened calvarium, and large vertebrae with short and large pedicles. We first identified mutations in Fibrillin-1 (FBN1) in the dominant form of WMS and then mutations in A Disintegrin-like And Metalloproteinase domain with ThromboSpondin type 1 repeats 10 (ADAMTS10) in the recessive form of WMS. The function of ADAMTS10 is unknown but these findings support a direct interaction between ADAMTS10 and FBN1. We then identified mutations in ADAMTSL2 in the recessive form of GD and a hotspot of mutations in FBN1 in the dominant form of GD and in AD (exon 41-42, encoding TGFß binding protein-like domain 5 (TB5) of FBN1). The function of ADAMTSL2 is unknown. Using a yeast double hybrid screen, we identified latent transforming growth factor-ß (TGFß) binding protein 1 as a partner of ADAMTSL2. We found an increased level of active TGFß in the fibroblast medium from patients with FBN1 or ADAMTSL2 mutations and an enhanced phosphorylated SMAD2 level, allowing us to conclude at an enhanced TGFß signaling in GD and AD. Finally, a direct interaction between ADAMTSL2 and FBN1 was demonstrated suggesting a dysregulation of FBN1/ADAMTSL2 interrelationship as the underlying mechanism of the short stature phenotypes. Using exome sequencing in MS probands, we identified de novo SMAD4 missense mutations, all involving isoleucine residue at position 500, in the MH2 domain. In MS fibroblasts, we found decreased ubiquitination level of SMAD4 and increased level of SMAD4 supporting a stabilization of SMAD4 protein. Functional SMAD4 is required for canonical signal transduction through the oligomerization with phosphorylated SMAD2/3 and SMAD1/5/8. We therefore studied the nuclear localization of mutant SMAD complexes and found that the complexes translocate to the nucleus. We finally observed a decreased expression of downstream TGFß target genes supporting impaired TGFß driven transcriptional control in MS. Our findings support a direct link between the short stature phenotypes and the TGFß signaling. However, the finding of enhanced TGFß signaling in Marfan phenotypes supports the existence of yet unknown mechanisms regulating TGFß action.


Assuntos
Estatura/fisiologia , Doenças do Desenvolvimento Ósseo/metabolismo , Doenças do Desenvolvimento Ósseo/fisiopatologia , Crescimento e Desenvolvimento/fisiologia , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Humanos
19.
Am J Hum Genet ; 85(5): 706-10, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19853239

RESUMO

Desbuquois dysplasia is a severe condition characterized by short stature, joint laxity, scoliosis, and advanced carpal ossification with a delta phalanx. Studying nine Desbuquois families, we identified seven distinct mutations in the Calcium-Activated Nucleotidase 1 gene (CANT1), which encodes a soluble UDP-preferring nucleotidase belonging to the apyrase family. Among the seven mutations, four were nonsense mutations (Del 5' UTR and exon 1, p.P245RfsX3, p.S303AfsX20, and p.W125X), and three were missense mutations (p.R300C, p.R300H, and p.P299L) responsible for the change of conserved amino acids located in the seventh nucleotidase conserved region (NRC). The arginine substitution at position 300 was identified in five out of nine families. The specific function of CANT1 is as yet unknown, but its substrates are involved in several major signaling functions, including Ca2+ release, through activation of pyrimidinergic signaling. Importantly, using RT-PCR analysis, we observed a specific expression in chondrocytes. We also found electron-dense material within distended rough endoplasmic reticulum in the fibroblasts of Desbuquois patients. Our findings demonstrate the specific involvement of a nucleotidase in the endochondral ossification process.


Assuntos
Doenças do Desenvolvimento Ósseo/genética , Cálcio/metabolismo , Mutação , Nucleotidases/genética , Regiões 5' não Traduzidas , Adolescente , Adulto , Sequência de Aminoácidos , Substituição de Aminoácidos , Arginina/metabolismo , Doenças do Desenvolvimento Ósseo/diagnóstico por imagem , Células Cultivadas , Pré-Escolar , Condrócitos/metabolismo , Cromossomos Humanos Par 17 , Códon sem Sentido , Consanguinidade , Retículo Endoplasmático Rugoso/ultraestrutura , Éxons , Evolução Fatal , Feminino , Fibroblastos/ultraestrutura , Homozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Núcleo Familiar , RNA Mensageiro/metabolismo , Radiografia
20.
J Med Genet ; 48(6): 417-21, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21415077

RESUMO

BACKGROUND: Geleophysic dysplasia (GD, OMIM 231050) is an autosomal recessive disorder characterised by short stature, small hands and feet, stiff joints, and thick skin. Patients often present with a progressive cardiac valvular disease which can lead to an early death. In a previous study including six GD families, we have mapped the disease gene on chromosome 9q34.2 and identified mutations in the A Disintegrin And Metalloproteinase with Thrombospondin repeats-like 2 gene (ADAMTSL2). METHODS: Following this study, we have collected the samples of 30 additional GD families, including 33 patients and identified ADAMTSL2 mutations in 14/33 patients, comprising 13 novel mutations. The absence of mutation in 19 patients prompted us to compare the two groups of GD patients, namely group 1, patients with ADAMTSL2 mutations (n=20, also including the 6 patients from our previous study), and group 2, patients without ADAMTSL2 mutations (n=19). RESULTS: The main discriminating features were facial dysmorphism and tip-toe walking, which were almost constantly observed in group 1. No differences were found concerning heart involvement, skin thickness, recurrent respiratory and ear infections, bronchopulmonary insufficiency, laryngo-tracheal stenosis, deafness, and radiographic features. CONCLUSIONS: It is concluded that GD is a genetically heterogeneous condition. Ongoing studies will hopefully lead to the identification of another disease gene.


Assuntos
Nanismo/genética , Proteínas da Matriz Extracelular , Anormalidades do Olho/genética , Anormalidades da Pele/genética , Adolescente , Adulto , Doenças do Desenvolvimento Ósseo , Criança , Pré-Escolar , Tecido Conjuntivo/anormalidades , Tecido Conjuntivo/patologia , Tecido Conjuntivo/fisiopatologia , Nanismo/etnologia , Nanismo/fisiopatologia , Europa (Continente)/epidemiologia , Proteínas da Matriz Extracelular/genética , Anormalidades do Olho/etnologia , Anormalidades do Olho/fisiopatologia , Feminino , Heterogeneidade Genética , Humanos , Corpos de Inclusão/genética , Lactente , Japão/epidemiologia , Deformidades Congênitas dos Membros , Masculino , Oriente Médio/epidemiologia , Mutação , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA