Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901727

RESUMO

Retinoid X receptor (RXR) agonists, which activate the RXR nuclear receptor, are effective in multiple preclinical cancer models for both treatment and prevention. While RXR is the direct target of these compounds, the downstream changes in gene expression differ between compounds. RNA sequencing was used to elucidate the effects of the novel RXRα agonist MSU-42011 on the transcriptome in mammary tumors of HER2+ mouse mammary tumor virus (MMTV)-Neu mice. For comparison, mammary tumors treated with the FDA approved RXR agonist bexarotene were also analyzed. Each treatment differentially regulated cancer-relevant gene categories, including focal adhesion, extracellular matrix, and immune pathways. The most prominent genes altered by RXR agonists positively correlate with survival in breast cancer patients. While MSU-42011 and bexarotene act on many common pathways, these experiments highlight the differences in gene expression between these two RXR agonists. MSU-42011 targets immune regulatory and biosynthetic pathways, while bexarotene acts on several proteoglycan and matrix metalloproteinase pathways. Exploration of these differential effects on gene transcription may lead to an increased understanding of the complex biology behind RXR agonists and how the activities of this diverse class of compounds can be utilized to treat cancer.


Assuntos
Neoplasias Mamárias Animais , Tetra-Hidronaftalenos , Animais , Camundongos , Bexaroteno , Expressão Gênica , Vírus do Tumor Mamário do Camundongo/genética , Receptores X de Retinoides/agonistas , Receptores X de Retinoides/metabolismo , Tetra-Hidronaftalenos/farmacologia
2.
Carcinogenesis ; 37(12): 1170-1179, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27659181

RESUMO

Because the 5-year survival rate for pancreatic cancer remains under 10%, new drugs are needed for the prevention and treatment of this devastating disease. Patients with chronic pancreatitis have a 12-fold higher risk of developing pancreatic cancer. LSL-KrasG12D/+;Pdx-1-Cre (KC) mice replicate the genetics, symptoms and histopathology found in human pancreatic cancer. Immune cells infiltrate into the pancreas of these mice and produce inflammatory cytokines that promote tumor growth. KC mice are particularly sensitive to the effects of lipopolysaccharide (LPS), as only 48% of KC mice survived an LPS challenge while 100% of wildtype (WT) mice survived. LPS also increased the percentage of CD45+ immune cells in the pancreas and immunosuppressive Gr1+ myeloid-derived suppressor cell in the spleen of these mice. The triterpenoid CDDO-imidazolide (CDDO-Im) not only reduced the lethal effects of LPS (71% survival) but also decreased the infiltration of CD45+ cells into the pancreas and the percentage of Gr1+ myeloid-derived suppressor cell in the spleen of KC mice 4-8 weeks after the initial LPS challenge. While the levels of inflammatory cytokine levels were markedly higher in KC mice versus WT mice challenged with LPS, CDDO-Im significantly decreased the production of IL-6, CCL-2, vascular endothelial growth factor and G-CSF in the KC mice. All of these cytokines are prognostic markers in pancreatic cancer or play important roles in the progression of this disease. Disrupting the inflammatory process with drugs such as CDDO-Im might be useful for preventing pancreatic cancer, especially in high-risk populations.


Assuntos
Inflamação/tratamento farmacológico , Neoplasias Experimentais/tratamento farmacológico , Pâncreas/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Fator Estimulador de Colônias de Granulócitos/biossíntese , Proteínas de Homeodomínio/genética , Humanos , Imidazóis/administração & dosagem , Inflamação/induzido quimicamente , Inflamação/genética , Interleucina-6/biossíntese , Antígenos Comuns de Leucócito/biossíntese , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Knockout , Proteínas Quimioatraentes de Monócitos/biossíntese , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/genética , Ácido Oleanólico/administração & dosagem , Ácido Oleanólico/análogos & derivados , Pâncreas/imunologia , Pâncreas/patologia , Neoplasias Pancreáticas/induzido quimicamente , Neoplasias Pancreáticas/genética , Pancreatite Crônica/complicações , Pancreatite Crônica/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Transativadores/genética , Fator A de Crescimento do Endotélio Vascular/biossíntese
3.
Org Biomol Chem ; 11(10): 1726-38, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23381885

RESUMO

A series of new oleanane imidazole carbamates, N-acylimidazoles or N-alkylimidazoles were synthesized, characterized and evaluated for their antiproliferative activity in AsPC-1 pancreatic cancer cells. Structure-activity relationship analysis revealed that the N-alkylimidazole 27 was the most active compound with apoptosis induction abilities correlated with upregulation of NOXA and downregulation of Bcl-xL. The antiproliferative activity of compound 27 was further tested in more solid tumor cell lines with IC(50) values lower than 1 µM.


Assuntos
Antineoplásicos/farmacologia , Compostos Heterocíclicos/farmacologia , Ácido Oleanólico/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Humanos , Conformação Molecular , Ácido Oleanólico/síntese química , Ácido Oleanólico/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
4.
Pharmacol Ther ; 252: 108561, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37952906

RESUMO

Upon heterodimerizing with other nuclear receptors, retinoid X receptors (RXR) act as ligand-dependent transcription factors, regulating transcription of critical signaling pathways that impact numerous hallmarks of cancer. By controlling both inflammation and immune responses, ligands that activate RXR can modulate the tumor microenvironment. Several small molecule agonists of these essential receptors have been synthesized. Historically, RXR agonists were tested for inhibition of growth in cancer cells, but more recent drug discovery programs screen new molecules for inhibition of inflammation or activation of immune cells. Bexarotene is the first successful example of an effective therapeutic that molecularly targets RXR; this drug was approved to treat cutaneous T cell lymphoma and is still used as a standard of care treatment for this disease. No additional RXR agonists have yet achieved FDA approval, but several promising novel compounds are being developed. In this review, we provide an overview of the multiple mechanisms by which RXR signaling regulates inflammation and tumor immunity. We also discuss the potential of RXR-dependent immune cell modulation for the treatment or prevention of cancer and concomitant challenges and opportunities.


Assuntos
Neoplasias , Humanos , Receptores X de Retinoides/agonistas , Receptores X de Retinoides/metabolismo , Bexaroteno/farmacologia , Bexaroteno/uso terapêutico , Neoplasias/tratamento farmacológico , Inflamação , Sistema Imunitário/metabolismo , Microambiente Tumoral
5.
Mol Cells ; 46(3): 176-186, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36994476

RESUMO

The oxidative balance of a cell is maintained by the Kelch-like ECH-associated protein 1 (KEAP1)/nuclear factor erythroid 2-related factor 2 (NRF2) pathway. This cytoprotective pathway detoxifies reactive oxygen species and xenobiotics. The role of the KEAP1/NRF2 pathway as pro-tumorigenic or anti-tumorigenic throughout stages of carcinogenesis (including initiation, promotion, progression, and metastasis) is complex. This mini review focuses on key studies describing how the KEAP1/NRF2 pathway affects cancer at different phases. The data compiled suggest that the roles of KEAP1/NRF2 in cancer are highly dependent on context; specifically, the model used (carcinogen-induced vs genetic), the tumor type, and the stage of cancer. Moreover, emerging data suggests that KEAP1/NRF2 is also important for regulating the tumor microenvironment and how its effects are amplified either by epigenetics or in response to co-occurring mutations. Further elucidation of the complexity of this pathway is needed in order to develop novel pharmacological tools and drugs to improve patient outcomes.


Assuntos
Fator 2 Relacionado a NF-E2 , Neoplasias , Humanos , Carcinogênese/genética , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais , Microambiente Tumoral
6.
Antioxidants (Basel) ; 12(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36670978

RESUMO

The NRF2/KEAP1 pathway protects healthy cells from malignant transformation and maintains cellular homeostasis. Up to 30% of human lung tumors gain constitutive NRF2 activity which contributes to cancer cell survival and chemoresistance, but the effects of NRF2 activation in immune cells within the tumor microenvironment are underexplored. Macrophages can promote cancer progression or regression depending on context, and NRF2 activation affects macrophage activity. The NRF2 activator CDDO-Methyl ester (CDDO-Me or bardoxolone methyl) reprogrammed Nrf2 wild-type (WT) tumor-educated bone marrow-derived macrophages (TE-BMDMs) from a tumor-promoting to a tumor-inhibiting phenotype, marked by an increase in M1 markers TNFα, IL-6, and MHC-II and a decrease in the tumor-promoting factors VEGF, CCL2, and CD206. No changes were observed in Nrf2 knockout (KO) TE-BMDMs. CDDO-Me decreased tumor burden (p < 0.001) and improved pathological grade (p < 0.05) in WT but not Nrf2 KO A/J mice. Tumor burden in Nrf2 KO mice was 4.6-fold higher (p < 0.001) than in WT mice, irrespective of treatment. CDDO-Me increased the number of lung-infiltrating macrophages in WT mice but lowered CD206 expression in these cells (p < 0.0001). In summary, Nrf2 KO exacerbates lung tumorigenesis in A/J mice, and CDDO-Me promotes an Nrf2-dependent, anti-cancer macrophage phenotype.

7.
Nat Prod Rep ; 29(12): 1463-79, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23047641

RESUMO

This review highlights the potential of natural and semisynthetic ursane-type triterpenoids as candidates for the design of multi-target bioactive compounds, with focus on their anticancer effects. A brief illustration of the biosynthesis, sources, and general biological effects of the main classes of naturally occurring pentacyclic triterpenoids (PTs) are provided.


Assuntos
Produtos Biológicos , Triterpenos Pentacíclicos , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Produtos Biológicos/síntese química , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Triterpenos Pentacíclicos/síntese química , Triterpenos Pentacíclicos/química , Triterpenos Pentacíclicos/farmacologia
8.
Bioorg Med Chem ; 20(19): 5774-86, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22959527

RESUMO

A series of new heterocyclic derivatives of ursolic acid 1 were synthesized and evaluated for their antiproliferative activity against AsPC-1 pancreatic cancer cells. Compounds 24-32, with an α,ß unsaturated ketone in conjugation with an heterocyclic ring in ring A have improved antiproliferative activities. Compound 32 is the most active compound with an IC(50) of 1.9 µM which is sevenfold more active than ursolic acid 1. Compound 32 arrests cell cycle in G1 phase and induces apoptosis in AsPC-1 cells with upregulation of p53, p21(waf1) and NOXA protein levels.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Triterpenos/química , Triterpenos/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Antineoplásicos Fitogênicos/síntese química , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Humanos , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Triterpenos/síntese química , Ácido Ursólico
9.
Beilstein J Org Chem ; 8: 164-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22423283

RESUMO

A new, straightforward and high yielding procedure to convert oleanolic acid derivatives into the corresponding δ-hydroxy-γ-lactones, by using the convenient oxidizing agent magnesium bis(monoperoxyphthalate) hexahydrate (MMPP) in refluxing acetonitrile, is reported. In addition, a two-step procedure for the preparation of oleanolic 12-oxo-28-carboxylic acid derivatives directly from Δ(12)-oleananes, without the need for an intermediary work-up, and keeping the same reaction solvent in both steps, is described as applied to the synthesis of 3,12-dioxoolean-28-oic acid.

10.
Sci Rep ; 12(1): 293, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997154

RESUMO

Rexinoids are ligands which activate retinoid X receptors (RXRs), regulating transcription of genes involved in cancer-relevant processes. Rexinoids have anti-neoplastic activity in multiple preclinical studies. Bexarotene, used to treat cutaneous T cell lymphoma, is the only FDA-approved rexinoid. Bexarotene has also been evaluated in clinical trials for lung and metastatic breast cancer, wherein subsets of patients responded despite advanced disease. By modifying structures of known rexinoids, we can improve potency and toxicity. We previously screened a series of novel rexinoids and selected V-125 as the lead based on performance in optimized in vitro assays. To validate our screening paradigm, we tested V-125 in clinically relevant mouse models of breast and lung cancer. V-125 significantly (p < 0.001) increased time to tumor development in the MMTV-Neu breast cancer model. Treatment of established mammary tumors with V-125 significantly (p < 0.05) increased overall survival. In the A/J lung cancer model, V-125 significantly (p < 0.01) decreased number, size, and burden of lung tumors. Although bexarotene elevated triglycerides and cholesterol in these models, V-125 demonstrated an improved safety profile. These studies provide evidence that our screening paradigm predicts novel rexinoid efficacy and suggest that V-125 could be developed into a new cancer therapeutic.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Receptores X de Retinoides/agonistas , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos Transgênicos , Receptores X de Retinoides/metabolismo , Transdução de Sinais , Fatores de Tempo , Carga Tumoral/efeitos dos fármacos
11.
Adv Pharmacol ; 91: 141-183, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34099107

RESUMO

The discovery of nuclear receptors, particularly retinoid X receptors (RXR), and their involvement in numerous pathways related to development sparked interest in their immunomodulatory properties. Genetic models using deletion or overexpression of RXR and the subsequent development of several small molecules that are agonists or antagonists of this receptor support a promising therapeutic role for these receptors in immunology. Bexarotene was approved in 1999 for the treatment of cutaneous T cell lymphoma. Several other small molecule RXR agonists have since been synthesized with limited preclinical development, but none have yet achieved FDA approval. Cancer treatment has recently been revolutionized with the introduction of immune checkpoint inhibitors, but their success has been restricted to a minority of patients. This review showcases the emerging immunomodulatory effects of RXR and the potential of small molecules that target this receptor as therapies for cancer and other diseases. Here we describe the essential roles that RXR and partner receptors play in T cells, dendritic cells, macrophages and epithelial cells, especially within the tumor microenvironment. Most of these effects are site and cancer type dependent but skew immune cells toward an anti-inflammatory and anti-tumor effect. This beneficial effect on immune cells supports the promise of combining rexinoids with approved checkpoint blockade therapies in order to enhance efficacy of the latter and to delay or potentially eliminate drug resistance. The data compiled in this review strongly suggest that targeting RXR nuclear receptors is a promising new avenue in immunomodulation for cancer and other chronic inflammatory diseases.


Assuntos
Neoplasias , Receptores X de Retinoides , Bexaroteno , Humanos , Neoplasias/tratamento farmacológico , Receptores Citoplasmáticos e Nucleares , Microambiente Tumoral
12.
Cancers (Basel) ; 13(19)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34638488

RESUMO

(1) Background: Notwithstanding numerous therapeutic advances, 176,000 deaths from breast and lung cancers will occur in the United States in 2021 alone. The tumor microenvironment and its modulation by drugs have gained increasing attention and relevance, especially with the introduction of immunotherapy as a standard of care in clinical practice. Retinoid X receptors (RXRs) are members of the nuclear receptor superfamily and upon ligand binding, function as transcription factors to modulate multiple cell functions. Bexarotene, the only FDA-approved RXR agonist, is still used to treat cutaneous T-cell lymphoma. (2) Methods: To test the immunomodulatory and anti-tumor effects of MSU42011, a new RXR agonist, we used two different immunocompetent murine models (MMTV-Neu mice, a HER2 positive model of breast cancer and the A/J mouse model, in which vinyl carbamate is used to initiate lung tumorigenesis) and an immunodeficient xenograft lung cancer model. (3) Results: Treatment of established tumors in immunocompetent models of HER2-positive breast cancer and Kras-driven lung cancer with MSU42011 significantly decreased the tumor burden and increased the ratio of CD8/CD4, CD25 T cells, which correlates with enhanced anti-tumor efficacy. Moreover, the combination of MSU42011 and immunotherapy (anti-PDL1 and anti-PD1 antibodies) significantly (p < 0.05) reduced tumor size vs. individual treatments. However, MSU42011 was ineffective in an athymic human A549 lung cancer xenograft model, supporting an immunomodulatory mechanism of action. (4) Conclusions: Collectively, these data suggest that the RXR agonist MSU42011 can be used to modulate the tumor microenvironment in breast and lung cancer.

13.
Cancers (Basel) ; 13(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396954

RESUMO

In pancreatic cancer the tumor microenvironment (TME) can account for up to 90% of the tumor mass. The TME drives essential functions in disease progression, invasion and metastasis. Tumor cells can use epigenetic modulation to evade immune recognition and shape the TME toward an immunosuppressive phenotype. Bromodomain inhibitors are a class of drugs that target BET (bromodomain and extra-terminal) proteins, impairing their ability to bind to acetylated lysines and therefore interfering with transcriptional initiation and elongation. INCB057643 is a new generation, orally bioavailable BET inhibitor that was developed for treating patients with advanced malignancies. KrasG12D/+; Trp53R172H/+; Pdx-1-Cre (KPC) mice mimic human disease, with similar progression and incidence of metastasis. Treatment of established tumors in KPC mice with INCB057643 increased survival by an average of 55 days, compared to the control group. Moreover, INCB057643 reduced metastatic burden in these mice. KPC mice treated with INCB057643, starting at 4 weeks of age, showed beneficial changes in immune cell populations in the pancreas and liver. Similarly, INCB057643 modified immune cell populations in the pancreas of KrasG12D/+; Pdx-1-Cre (KC) mice with pancreatitis, an inflammatory process known to promote pancreatic cancer progression. The data presented here suggest that the bromodomain inhibitor INCB057643 modulates the TME, reducing disease burden in two mouse models of pancreatic cancer. Furthermore, this work suggests that BRD4 may play a role in establishing the TME in the liver, a primary metastatic site for pancreatic cancer.

14.
Sci Rep ; 10(1): 22244, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33335263

RESUMO

Effective drugs are needed for lung cancer, as this disease remains the leading cause of cancer-related deaths. Rexinoids are promising drug candidates for cancer therapy because of their ability to modulate genes involved in inflammation, cell proliferation or differentiation, and apoptosis through activation of the retinoid X receptor (RXR). The only currently FDA-approved rexinoid, bexarotene, is ineffective as a single agent for treating epithelial cancers and induces hypertriglyceridemia. Here, we used a previously validated screening paradigm to evaluate 23 novel rexinoids for biomarkers related to efficacy and safety. These biomarkers include suppression of inducible nitric oxide synthase (iNOS) and induction of sterol regulatory element-binding protein (SREBP). Because of its potent iNOS suppression, low SREBP induction, and activation of RXR, MSU-42011 was selected as our lead compound. We next used MSU-42011 to treat established tumors in a clinically relevant Kras-driven mouse model of lung cancer. KRAS is one of the most common driver mutations in human lung cancer and correlates with aggressive disease progression and poor patient prognosis. Ultrasound imaging was used to detect and monitor tumor development and growth over time in the lungs of the A/J mice. MSU-42011 markedly decreased the tumor number, size, and histopathology of lung tumors compared to the control and bexarotene groups. Histological sections of lung tumors in mice treated with MSU-42011 exhibited reduced cell density and fewer actively proliferating cells compared to the control and bexarotene-treated tumors. Although bexarotene significantly (p < 0.01) elevated plasma triglycerides and cholesterol, treatment with MSU-42011 did not increase these biomarkers, demonstrating a more favorable toxicity profile in vivo. The combination of MSU-42011 and carboplatin and paclitaxel reduced macrophages in the lung and increased activation markers of CD8+T cells compared to the control groups. Our results validate our screening paradigm for in vitro testing of novel rexinoids and demonstrate the potential for MSU-42011 to be developed for the treatment of KRAS-driven lung cancer.


Assuntos
Anticarcinógenos/farmacologia , Carcinógenos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptores X de Retinoides/agonistas , Tetra-Hidronaftalenos/farmacologia , Animais , Anticarcinógenos/química , Apoptose/efeitos dos fármacos , Bexaroteno/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Imuno-Histoquímica , Imunomodulação/efeitos dos fármacos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Camundongos , Estrutura Molecular , Proteínas de Ligação a Elemento Regulador de Esterol/genética , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Tetra-Hidronaftalenos/química , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Theranostics ; 9(21): 6224-6238, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31534547

RESUMO

Two recently approved PARP inhibitors provide an important new therapeutic option for patients with BRCA-mutated metastatic breast cancer. PARP inhibitors significantly prolong progression-free survival in patients, but conventional oral delivery of PARP inhibitors is hindered by limited bioavailability and off-target toxicities, thus compromising the therapeutic benefits and quality of life for patients. Here, we developed a new delivery system, in which the PARP inhibitor Talazoparib is encapsulated in the bilayer of a nano-liposome, to overcome these limitations. Methods: Nano-Talazoparib (NanoTLZ) was characterized both in vitro and in vivo. The therapeutic efficacy and toxicity of Nano-Talazoparib (NanoTLZ) were evaluated in BRCA-deficient mice. The regulation of NanoTLZ on gene transcription and immunomodulation were further investigated in spontaneous BRCA-deficient tumors. Results: NanoTLZ significantly (p<0.05) prolonged the overall survival of BRCA-deficient mice compared to all of the other experimental groups, including saline control, empty nanoparticles, and free Talazoparib groups (oral and i.v.). Moreover, NanoTLZ was better tolerated than treatment with free Talazoparib, with no significant weight lost or alopecia as was observed with the free drug. After 5 doses, NanoTLZ altered the expression of over 140 genes and induced DNA damage, cell cycle arrest and inhibition of cell proliferation in the tumor. In addition, NanoTLZ favorably modulated immune cell populations in vivo and significantly (p<0.05) decreased the percentage of myeloid derived suppressor cells in both the tumor and spleen compared to control groups. Conclusions: Our results demonstrate that delivering nanoformulated Talazoparib not only enhances treatment efficacy but also reduces off-target toxicities in BRCA-deficient mice; the same potential is predicted for patients with BRCA-deficient breast cancer.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Lipossomos/administração & dosagem , Neoplasias Mamárias Experimentais/tratamento farmacológico , Nanopartículas/administração & dosagem , Inibidores de Poli(ADP-Ribose) Polimerases/administração & dosagem , Animais , Proteína BRCA1/genética , Proteína BRCA2/genética , Composição de Medicamentos , Feminino , Humanos , Imunomodulação , Camundongos , Ftalazinas , Resultado do Tratamento
16.
Sci Rep ; 9(1): 7072, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31068602

RESUMO

The stromal reaction in pancreatic cancer creates a physical barrier that blocks therapeutic intervention and creates an immunosuppressive tumor microenvironment. The Rho/myocardin-related transcription factor (MRTF) pathway is implicated in the hyper-activation of fibroblasts in fibrotic diseases and the activation of pancreatic stellate cells. In this study we use CCG-222740, a small molecule, designed as a Rho/MRTF pathway inhibitor. This compound decreases the activation of stellate cells in vitro and in vivo, by reducing the levels of alpha smooth muscle actin (α-SMA) expression. CCG-222740 also modulates inflammatory components of the pancreas in KC mice (LSL-KrasG12D/+; Pdx-1-Cre) stimulated with caerulein. It decreases the infiltration of macrophages and increases CD4 T cells and B cells. Analysis of the pancreatic adenocarcinoma (PDA) TCGA dataset revealed a correlation between elevated RhoA, RhoC and MRTF expression and decreased survival in PDA patients. Moreover, a MRTF signature is correlated with a Th2 cell signature in human PDA tumors.


Assuntos
Adenocarcinoma/metabolismo , Neoplasias Pancreáticas/metabolismo , Células Estreladas do Pâncreas/efeitos dos fármacos , Transativadores/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Proteína de Ligação a GTP rhoC/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Feminino , Técnicas de Introdução de Genes , Proteínas de Homeodomínio/genética , Integrases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Estreladas do Pâncreas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Células RAW 264.7 , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína de Ligação a GTP rhoC/metabolismo
17.
NPJ Breast Cancer ; 5: 39, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31700995

RESUMO

Despite numerous therapeutic advances in the past decade, breast cancer is expected to cause over 42,000 deaths in the United States in 2019. Breast cancer had been considered an immunologically silent tumor; however recent findings suggest that immune cells play important roles in tumor growth even in the breast. Retinoid X receptors (RXRs) are a subclass of nuclear receptors that act as ligand-dependent transcription factors that regulate a variety of cellular processes including proliferation and differentiation; in addition, they are essential for macrophage biology. Rexinoids are synthetic molecules that bind and activate RXRs. Bexarotene is the only rexinoid approved by the FDA for the treatment of refractory cutaneous T-cell lymphoma. Other more-potent rexinoids have been synthesized, such as LG100268 (LG268). Here, we report that treatment with LG 268, but not bexarotene, decreased infiltration of myeloid-derived suppressor cells and CD206-expressing macrophages, increased the expression of PD-L1 by 50%, and increased the ratio of CD8/CD4, CD25 T cells, which correlates with increased cytotoxic activity of CD8 T cells in tumors of MMTV-Neu mice (a model of HER2-positive breast cancer). In the MMTV-PyMT murine model of triple negative breast cancer, LG268 treatment of established tumors prolonged survival, and in combination with anti-PD-L1 antibodies, significantly (p = 0.05) increased the infiltration of cytotoxic CD8 T cells and apoptosis. Collectively, these data suggest that the use of LG268, a RXR agonist, can improve response to immune checkpoint blockade in HER2+ or triple-negative breast cancer.

18.
Cancer Prev Res (Phila) ; 12(4): 211-224, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30760500

RESUMO

Rexinoids, selective ligands for retinoid X receptors (RXR), have shown promise in preventing many types of cancer. However, the limited efficacy and undesirable lipidemic side-effects of the only clinically approved rexinoid, bexarotene, drive the search for new and better rexinoids. Here we report the evaluation of novel pyrimidinyl (Py) analogues of two known chemopreventive rexinoids, bexarotene (Bex) and LG100268 (LG268) in a new paradigm. We show that these novel derivatives were more effective agents than bexarotene for preventing lung carcinogenesis induced by a carcinogen. In addition, these new analogues have an improved safety profile. PyBex caused less elevation of plasma triglyceride levels than bexarotene, while PyLG268 reduced plasma cholesterol levels and hepatomegaly compared with LG100268. Notably, this new paradigm mechanistically emphasizes the immunomodulatory and anti-inflammatory activities of rexinoids. We reveal new immunomodulatory actions of the above rexinoids, especially their ability to diminish the percentage of macrophages and myeloid-derived suppressor cells in the lung and to redirect activation of M2 macrophages. The rexinoids also potently inhibit critical inflammatory mediators including IL6, IL1ß, CCL9, and nitric oxide synthase (iNOS) induced by lipopolysaccharide. Moreover, in vitro iNOS and SREBP (sterol regulatory element-binding protein) induction assays correlate with in vivo efficacy and toxicity, respectively. Our results not only report novel pyrimidine derivatives of existing rexinoids, but also describe a series of biological screening assays that will guide the synthesis of additional rexinoids. Further progress in rexinoid synthesis, potency, and safety should eventually lead to a clinically acceptable and useful new drug for patients with cancer.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Tetra-Hidronaftalenos/farmacologia , Animais , Apoptose , Bexaroteno/farmacologia , Proliferação de Células , Feminino , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos A , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Curr Protoc Pharmacol ; 83(1): e48, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30325112

RESUMO

Chronic or repeated episodes of acute pancreatic inflammation, or pancreatitis, are risk factors for the development of pancreatic cancer. Pancreatic cancer is characterized by a strong fibro-inflammatory tumor microenvironment. In pancreatitis, the same fibro-inflammatory reaction is observed concurrently with a loss of normal pancreatic cells. Mouse models are commonly employed to study the progression of pancreatitis and pancreatic cancer, with genetic and pharmacological tools used to elucidate cellular and acellular interactions within pancreatic tumors. Described in this article is a protocol for using KrasG12D ; Pdx1-Cre (KC) mice stimulated with caerulein, a small oligopeptide that increases secretion of digestive enzymes, as a model for pancreatitis. KRAS is mutated in 90-95% of the tumors in patients with pancreatic cancer. The combination of this mutation with an inflammatory stimulus accelerates the development of pancreatic cancer. The protocol detailed in this report follows the progression of disease in KC mice from pancreatic intraepithelial neoplasias to invasive pancreatic adenocarcinoma. © 2018 by John Wiley & Sons, Inc.


Assuntos
Adenocarcinoma/etiologia , Pâncreas/patologia , Neoplasias Pancreáticas/etiologia , Pancreatite/complicações , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Ceruletídeo , Modelos Animais de Doenças , Pâncreas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Pancreatite/induzido quimicamente , Pancreatite/genética , Pancreatite/patologia , Mutação Puntual , Proteínas Proto-Oncogênicas p21(ras)/genética
20.
Sci Rep ; 8(1): 15923, 2018 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-30374056

RESUMO

Low 5-year survival rates, increasing incidence, as well as the specific challenges of targeting pancreatic cancer, clearly support an urgent need for new multifunctional drugs for the prevention and treatment of this fatal disease. Natural products, such as abietane-type diterpenoids, are widely studied as promiscuous anticancer agents. In this study, dehydroabietic oximes were identified as potential compounds to target pancreatic cancer and cancer-related inflammation. The compounds inhibited the growth of human pancreatic cancer Aspc-1 cells with IC50 values in the low micromolar range and showed anti-inflammatory activity, measured as the inhibition of nitric oxide production, an important inflammatory mediator in the tumour microenvironment. Further studies revealed that the compounds were able to induce cancer cell differentiation and concomitantly downregulate cyclin D1 expression with upregulation of p27 levels, consistent with cell cycle arrest at the G1 phase. Moreover, a kinase profiling study showed that one of the compounds has isoform-selective, however modest, inhibitory activity on RSK2, an AGC kinase that has been implicated in cellular invasion and metastasis.


Assuntos
Proliferação de Células/efeitos dos fármacos , Ciclina D1/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Oximas/farmacologia , Diferenciação Celular , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Humanos , Óxido Nítrico/metabolismo , Oximas/síntese química , Oximas/química , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA