Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(39): e2302500120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37722050

RESUMO

To mount appropriate responses, T cells integrate complex sequences of receptor stimuli perceived during transient interactions with antigen-presenting cells. Although it has been hypothesized that the dynamics of these interactions influence the outcome of T cell activation, methodological limitations have hindered its formal demonstration. Here, we have engineered the Light-inducible T cell engager (LiTE) system, a recombinant optogenetics-based molecular tool targeting the T cell receptor (TCR). The LiTE system constitutes a reversible molecular switch displaying exquisite reactivity. As proof of concept, we dissect how specific temporal patterns of TCR stimulation shape T cell activation. We established that CD4+ T cells respond to intermittent TCR stimulation more efficiently than their CD8+ T cells counterparts and provide evidence that distinct sequences of TCR stimulation encode different cytokine programs. Finally, we show that the LiTE system could be exploited to create light-activated bispecific T cell engagers and manipulate tumor cell killing. Overall, the LiTE system provides opportunities to understand how T cells integrate TCR stimulations and to trigger T cell cytotoxicity with high spatiotemporal control.


Assuntos
Células Apresentadoras de Antígenos , Linfócitos T CD8-Positivos , Citocinas , Células Epiteliais , Ativação Linfocitária
2.
Sci Adv ; 8(7): eabl5855, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35171677

RESUMO

Both classical and quantum electrodynamics predict the existence of dipole-dipole long-range electrodynamic intermolecular forces; however, these have never been hitherto experimentally observed. The discovery of completely new and unanticipated forces acting between biomolecules could have considerable impact on our understanding of the dynamics and functioning of the molecular machines at work in living organisms. Here, using two independent experiments, on the basis of different physical effects detected by fluorescence correlation spectroscopy and terahertz spectroscopy, respectively, we demonstrate experimentally the activation of resonant electrodynamic intermolecular forces. This is an unprecedented experimental proof of principle of a physical phenomenon that, having been observed for biomacromolecules and with long-range action (up to 1000 Å), could be of importance for biology. In addition to thermal fluctuations that drive molecular motion randomly, these resonant (and thus selective) electrodynamic forces may contribute to molecular encounters in the crowded cellular space.

3.
Phys Rev E ; 96(2-1): 022403, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28950524

RESUMO

In the present paper, an experimental feasibility study on the detection of long-range intermolecular interactions through three-dimensional molecular diffusion in solution is performed. This follows recent theoretical and numerical analyses reporting that long-range electrodynamic forces between biomolecules could be identified through deviations from Brownian diffusion. The suggested experimental technique was fluorescence correlation spectroscopy (FCS). By considering two oppositely charged molecular species in aqueous solution, namely, lysozymes and fluorescent dye molecules (Alexa488), the diffusion coefficient of the dyes has been measured for different values of the concentration of lysozyme, that is, for different average distances between the oppositely charged molecules. For our model, long-range interactions are of electrostatic origin, suggesting that their action radius can be varied by changing the ionic strength of the solution. The experimental outcomes clearly prove the detectability of long-range intermolecular interactions by means of the FCS technique. Molecular dynamics simulations provide a clear and unambiguous interpretation of the experimental results.


Assuntos
Corantes Fluorescentes/química , Fluorbenzenos/química , Muramidase/química , Espectrometria de Fluorescência/métodos , Algoritmos , Animais , Galinhas , Difusão , Proteínas do Ovo/química , Proteínas do Ovo/metabolismo , Desenho de Equipamento , Íons/química , Microscopia de Fluorescência , Simulação de Dinâmica Molecular , Muramidase/metabolismo , Soluções , Espectrometria de Fluorescência/instrumentação , Eletricidade Estática , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA