Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Plant Cell ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456220

RESUMO

Studies in plants were often pioneering in the field of RNA silencing and revealed a broad range of small RNA (sRNA) categories. When associated with ARGONAUTE (AGO) proteins, sRNAs play important functions in development, genome integrity, stress responses, and antiviral immunity. Today, most of the protein factors required for the biogenesis of sRNA classes, their amplification through the production of double-stranded RNA, and their function in transcriptional and post-transcriptional regulation have been identified. Nevertheless, and despite the importance of RNA silencing, we still know very little about their post-translational regulation. This is in stark contrast with studies in metazoans, where different modifications such as prolyl hydroxylation, phosphorylation, sumoylation, ubiquitylation, and others have been reported to alter the activity and stability of key factors, such as AGO proteins. Here, we review current knowledge of how key components of the RNA silencing machinery in plants are regulated during development and by microbial hijacking of endogenous proteases.

2.
Nucleic Acids Res ; 49(19): 11274-11293, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34614168

RESUMO

In plants and some animal lineages, RNA silencing is an efficient and adaptable defense mechanism against viruses. To counter it, viruses encode suppressor proteins that interfere with RNA silencing. Phloem-restricted viruses are spreading at an alarming rate and cause substantial reduction of crop yield, but how they interact with their hosts at the molecular level is still insufficiently understood. Here, we investigate the antiviral response against phloem-restricted turnip yellows virus (TuYV) in the model plant Arabidopsis thaliana. Using a combination of genetics, deep sequencing, and mechanical vasculature enrichment, we show that the main axis of silencing active against TuYV involves 22-nt vsiRNA production by DCL2, and their preferential loading into AGO1. Moreover, we identify vascular secondary siRNA produced from plant transcripts and initiated by DCL2-processed AGO1-loaded vsiRNA. Unexpectedly, and despite the viral encoded VSR P0 previously shown to mediate degradation of AGO proteins, vascular AGO1 undergoes specific post-translational stabilization during TuYV infection. Collectively, our work uncovers the complexity of antiviral RNA silencing against phloem-restricted TuYV and prompts a re-assessment of the role of its suppressor of silencing P0 during genuine infection.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Argonautas/genética , Proteínas de Ciclo Celular/genética , Interações Hospedeiro-Patógeno/genética , Luteoviridae/genética , Doenças das Plantas/genética , Ribonuclease III/genética , Proteínas Virais/genética , Sequência de Aminoácidos , Arabidopsis/imunologia , Arabidopsis/virologia , Proteínas de Arabidopsis/imunologia , Proteínas Argonautas/imunologia , Proteínas de Ciclo Celular/imunologia , Resistência à Doença/genética , Regulação da Expressão Gênica , Genes Supressores , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno/imunologia , Luteoviridae/crescimento & desenvolvimento , Luteoviridae/metabolismo , Floema/genética , Floema/imunologia , Floema/virologia , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Interferência de RNA , Ribonuclease III/imunologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Proteínas Virais/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(11): 6205-6215, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32123086

RESUMO

The jasmonate (JA)-pathway regulators MYC2, MYC3, and MYC4 are central nodes in plant signaling networks integrating environmental and developmental signals to fine-tune JA defenses and plant growth. Continuous activation of MYC activity is potentially lethal. Hence, MYCs need to be tightly regulated in order to optimize plant fitness. Among the increasing number of mechanisms regulating MYC activity, protein stability is arising as a major player. However, how the levels of MYC proteins are modulated is still poorly understood. Here, we report that MYC2, MYC3, and MYC4 are targets of BPM (BTB/POZ-MATH) proteins, which act as substrate adaptors of CUL3-based E3 ubiquitin ligases. Reduction of function of CUL3BPM in amiR-bpm lines, bpm235 triple mutants, and cul3ab double mutants enhances MYC2 and MYC3 stability and accumulation and potentiates plant responses to JA such as root-growth inhibition and MYC-regulated gene expression. Moreover, MYC3 polyubiquitination levels are reduced in amiR-bpm lines. BPM3 protein is stabilized by JA, suggesting a negative feedback regulatory mechanism to control MYC activity, avoiding harmful runaway responses. Our results uncover a layer for JA-pathway regulation by CUL3BPM-mediated degradation of MYC transcription factors.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas Culina/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Oxilipinas/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas Culina/genética , Retroalimentação Fisiológica , Mutação , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Estabilidade Proteica , Proteólise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transativadores/genética , Transativadores/metabolismo , Ubiquitinação/fisiologia
4.
Proc Natl Acad Sci U S A ; 116(31): 15725-15734, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31308219

RESUMO

Early abscisic acid signaling involves degradation of clade A protein phosphatases type 2C (PP2Cs) as a complementary mechanism to PYR/PYL/RCAR-mediated inhibition of PP2C activity. At later steps, ABA induces up-regulation of PP2C transcripts and protein levels as a negative feedback mechanism. Therefore, resetting of ABA signaling also requires PP2C degradation to avoid excessive ABA-induced accumulation of PP2Cs. It has been demonstrated that ABA induces the degradation of existing ABI1 and PP2CA through the PUB12/13 and RGLG1/5 E3 ligases, respectively. However, other unidentified E3 ligases are predicted to regulate protein stability of clade A PP2Cs as well. In this work, we identified BTB/POZ AND MATH DOMAIN proteins (BPMs), substrate adaptors of the multimeric cullin3 (CUL3)-RING-based E3 ligases (CRL3s), as PP2CA-interacting proteins. BPM3 and BPM5 interact in the nucleus with PP2CA as well as with ABI1, ABI2, and HAB1. BPM3 and BPM5 accelerate the turnover of PP2Cs in an ABA-dependent manner and their overexpression leads to enhanced ABA sensitivity, whereas bpm3 bpm5 plants show increased accumulation of PP2CA, ABI1 and HAB1, which leads to global diminished ABA sensitivity. Using biochemical and genetic assays, we demonstrated that ubiquitination of PP2CA depends on BPM function. Given the formation of receptor-ABA-phosphatase ternary complexes is markedly affected by the abundance of protein components and ABA concentration, we reveal that BPMs and multimeric CRL3 E3 ligases are important modulators of PP2C coreceptor levels to regulate early ABA signaling as well as the later desensitizing-resetting steps.


Assuntos
Ácido Abscísico/farmacocinética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Culina/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteólise , Motivos de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Culina/genética , Fosfoproteínas Fosfatases/genética
5.
Proc Natl Acad Sci U S A ; 116(45): 22872-22883, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31628252

RESUMO

RNA silencing is a major antiviral defense mechanism in plants and invertebrates. Plant ARGONAUTE1 (AGO1) is pivotal in RNA silencing, and hence is a major target for counteracting viral suppressors of RNA-silencing proteins (VSRs). P0 from Turnip yellows virus (TuYV) is a VSR that was previously shown to trigger AGO1 degradation via an autophagy-like process. However, the identity of host proteins involved and the cellular site at which AGO1 and P0 interact were unknown. Here we report that P0 and AGO1 associate on the endoplasmic reticulum (ER), resulting in their loading into ER-associated vesicles that are mobilized to the vacuole in an ATG5- and ATG7-dependent manner. We further identified ATG8-Interacting proteins 1 and 2 (ATI1 and ATI2) as proteins that associate with P0 and interact with AGO1 on the ER up to the vacuole. Notably, ATI1 and ATI2 belong to an endogenous degradation pathway of ER-associated AGO1 that is significantly induced following P0 expression. Accordingly, ATI1 and ATI2 deficiency causes a significant increase in posttranscriptional gene silencing (PTGS) activity. Collectively, we identify ATI1 and ATI2 as components of an ER-associated AGO1 turnover and proper PTGS maintenance and further show how the VSR P0 manipulates this pathway.


Assuntos
Proteínas Argonautas/metabolismo , Autofagia , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Virais/metabolismo , Proteólise , Vacúolos/metabolismo
6.
Plant Mol Biol ; 102(4-5): 359-372, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31848919

RESUMO

KEY MESSAGE: Protein degradation is essential in plant growth and development. The stability of Cullin3 substrate adaptor protein BPM1 is regulated by multiple environmental cues pointing on manifold control of targeted protein degradation. A small family of six MATH-BTB genes (BPM1-6) is described in Arabidopsis thaliana. BPM proteins are part of the Cullin E3 ubiquitin ligase complexes and are known to bind at least three families of transcription factors: ERF/AP2 class I, homeobox-leucine zipper and R2R3 MYB. By targeting these transcription factors for ubiquitination and subsequent proteasomal degradation, BPMs play an important role in plant flowering, seed development and abiotic stress response. In this study, we generated BPM1-overexpressing plants that showed an early flowering phenotype, resistance to abscisic acid and tolerance to osmotic stress. We analyzed BPM1-GFP protein stability and found that the protein has a high turnover rate and is degraded by the proteasome 26S in a Cullin-dependent manner. Finally, we found that BPM1 protein stability is environmentally conditioned. Darkness and salt stress triggered BPM1 degradation, whereas elevated temperature enhanced BPM1 stability and accumulation in planta.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Flores/fisiologia , Estresse Fisiológico , Fatores de Transcrição/fisiologia , Ácido Abscísico , Arabidopsis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Plasmídeos/genética , Pólen/fisiologia , Complexo de Endopeptidases do Proteassoma/fisiologia , Proteólise , Sementes/fisiologia , Ubiquitina-Proteína Ligases/fisiologia
7.
EMBO J ; 32(17): 2307-20, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23912815

RESUMO

Protein ubiquitylation is a post-translational modification that controls all aspects of eukaryotic cell functionality, and its defective regulation is manifested in various human diseases. The ubiquitylation process requires a set of enzymes, of which the ubiquitin ligases (E3s) are the substrate recognition components. Modular CULLIN-RING ubiquitin ligases (CRLs) are the most prevalent class of E3s, comprising hundreds of distinct CRL complexes with the potential to recruit as many and even more protein substrates. Best understood at both structural and functional levels are CRL1 or SCF (SKP1/CUL1/F-box protein) complexes, representing the founding member of this class of multimeric E3s. Another CRL subfamily, called CRL3, is composed of the molecular scaffold CULLIN3 and the RING protein RBX1, in combination with one of numerous BTB domain proteins acting as substrate adaptors. Recent work has firmly established CRL3s as major regulators of different cellular and developmental processes as well as stress responses in both metazoans and higher plants. In humans, functional alterations of CRL3s have been associated with various pathologies, including metabolic disorders, muscle, and nerve degeneration, as well as cancer. In this review, we summarize recent discoveries on the function of CRL3s in both metazoans and plants, and discuss their mode of regulation and specificities.


Assuntos
Proteínas Culina/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Animais , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas Culina/química , Proteínas Culina/genética , Humanos , Doenças Metabólicas/enzimologia , Neoplasias/enzimologia , Degeneração Neural/enzimologia , Reguladores de Crescimento de Plantas/biossíntese , Proteínas de Plantas/metabolismo , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Transporte Proteico , Transdução de Sinais/genética , Estresse Fisiológico/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo
8.
EMBO J ; 30(4): 731-43, 2011 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-21240189

RESUMO

Protein ubiquitylation regulates a broad variety of biological processes in all eukaryotes. Recent work identified a novel class of cullin-containing ubiquitin ligases (E3s) composed of CUL4, DDB1, and one WD40 protein, believed to act as a substrate receptor. Strikingly, CUL4-based E3 ligases (CRL4s) have important functions at the chromatin level, including responses to DNA damage in metazoans and plants and, in fission yeast, in heterochromatin silencing. Among putative CRL4 receptors we identified MULTICOPY SUPPRESSOR OF IRA1 (MSI1), which belongs to an evolutionary conserved protein family. MSI1-like proteins contribute to different protein complexes, including the epigenetic regulatory Polycomb repressive complex 2 (PRC2). Here, we provide evidence that Arabidopsis MSI1 physically interacts with DDB1A and is part of a multimeric protein complex including CUL4. CUL4 and DDB1 loss-of-function lead to embryo lethality. Interestingly, as in fis class mutants, cul4 mutants exhibit autonomous endosperm initiation and loss of parental imprinting of MEDEA, a target gene of the Arabidopsis PRC2 complex. In addition, after pollination both MEDEA transcript and protein accumulate in a cul4 mutant background. Overall, our work provides the first evidence of a physical and functional link between a CRL4 E3 ligase and a PRC2 complex, thus indicating a novel role of ubiquitylation in the repression of gene expression.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Culina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Impressão Genômica/fisiologia , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Proteínas Culina/genética , Proteínas Culina/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica de Plantas , Impressão Genômica/genética , Dados de Sequência Molecular , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/fisiologia , Plantas Geneticamente Modificadas , Ligação Proteica/fisiologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/fisiologia , Homologia de Sequência de Aminoácidos , Ubiquitinação/fisiologia
9.
Plant Cell ; 23(10): 3627-40, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21990941

RESUMO

Plant phototropism is an adaptive response to changes in light direction, quantity, and quality that results in optimization of photosynthetic light harvesting, as well as water and nutrient acquisition. Though several components of the phototropic signal response pathway have been identified in recent years, including the blue light (BL) receptors phototropin1 (phot1) and phot2, much remains unknown. Here, we show that the phot1-interacting protein NONPHOTOTROPIC HYPOCOTYL3 (NPH3) functions as a substrate adapter in a CULLIN3-based E3 ubiquitin ligase, CRL3(NPH3). Under low-intensity BL, CRL3(NPH3) mediates the mono/multiubiquitination of phot1, likely marking it for clathrin-dependent internalization from the plasma membrane. In high-intensity BL, phot1 is both mono/multi- and polyubiquitinated by CRL3(NPH3), with the latter event targeting phot1 for 26S proteasome-mediated degradation. Polyubiquitination and subsequent degradation of phot1 under high-intensity BL likely represent means of receptor desensitization, while mono/multiubiquitination-stimulated internalization of phot1 may be coupled to BL-induced relocalization of hormone (auxin) transporters.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Transdução de Sinal Luminoso/fisiologia , Fototropismo/fisiologia , Ubiquitinação/fisiologia , Animais , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Transporte Biológico , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Chlorocebus aethiops , Proteínas Culina , Ácidos Indolacéticos/metabolismo , Lepidópteros , Luz , Transdução de Sinal Luminoso/efeitos da radiação , Mutação , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fototropinas/genética , Fototropinas/metabolismo , Fototropismo/efeitos da radiação , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Serina-Treonina Quinases , Proteólise , Plântula/citologia , Plântula/genética , Plântula/fisiologia , Plântula/efeitos da radiação , Nicotiana/genética , Nicotiana/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos da radiação
10.
iScience ; 27(3): 109151, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38384836

RESUMO

In Arabidopsis thaliana, ARGONAUTE1 (AGO1) plays a central role in microRNA (miRNA) and small interfering RNA (siRNA)-mediated silencing. AGO1 associates to the rough endoplasmic reticulum to conduct miRNA-mediated translational repression, mRNA cleavage, and biogenesis of phased siRNAs. Here, we show that a 37°C heat stress (HS) promotes AGO1 protein accumulation in cytosolic condensates where it colocalizes with components of siRNA bodies and of stress granules. AGO1 contains a prion-like domain in its poorly characterized N-terminal Poly-Q domain, which is sufficient to undergo phase separation independently of the presence of SGS3. HS only moderately affects the small RNA repertoire, the loading of AGO1 by miRNAs, and the signatures of target cleavage, suggesting that its localization in condensates protects AGO1 rather than promoting or impairing its activity in reprogramming gene expression during stress. Collectively, our work sheds new light on the impact of high temperature on a main effector of RNA silencing in plants.

11.
Proc Natl Acad Sci U S A ; 107(34): 15275-80, 2010 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-20696906

RESUMO

One of the predominant cell-cycle programs found in mature tissues is endoreplication, also known as endoreduplication, that leads to cellular polyploidy. A key question for the understanding of endoreplication cycles is how oscillating levels of cyclin-dependent kinase activity are generated that control repeated rounds of DNA replication. The APC/C performs a pivotal function in the mitotic cell cycle by promoting anaphase and paving the road for a new round of DNA replication. However, using marker lines and plants in which APC/C components are knocked down, we show here that outgrowing and endoreplicating Arabidopsis leaf hairs display no or very little APC/C activity. Instead we find that RBX1-containing Cullin-RING E3 ubiquitin-Ligases (CRLs) are of central importance for the progression through endoreplication cycles; in particular, we have identified CULLIN4 as a major regulator of endoreplication in Arabidopsis trichomes. We have incorporated our findings into a bio-mathematical simulation presenting a robust two-step model of endoreplication control with one type of cyclin-dependent kinase inhibitor function for entry and a CRL-dependent oscillation of cyclin-dependent kinase activity via degradation of a second type of CDK inhibitor during endoreplication cycles.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas Culina/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proteínas Culina/genética , Replicação do DNA , DNA de Plantas/biossíntese , DNA de Plantas/genética , Genes de Plantas , Microscopia Eletrônica de Varredura , Modelos Biológicos , Mutação , Estruturas Vegetais/ultraestrutura , Plantas Geneticamente Modificadas , Poliploidia , Interferência de RNA
12.
PLoS Genet ; 5(1): e1000328, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19132085

RESUMO

CULLIN3 (CUL3) together with BTB-domain proteins form a class of Cullin-RING ubiquitin ligases (called CRL3s) that control the rapid and selective degradation of important regulatory proteins in all eukaryotes. Here, we report that in the model plant Arabidopsis thaliana, CUL3 regulates plant growth and development, not only during embryogenesis but also at post-embryonic stages. First, we show that CUL3 modulates the emission of ethylene, a gaseous plant hormone that is an important growth regulator. A CUL3 hypomorphic mutant accumulates ACS5, the rate-limiting enzyme in ethylene biosynthesis and as a consequence exhibits a constitutive ethylene response. Second, we provide evidence that CUL3 regulates primary root growth by a novel ethylene-dependant pathway. In particular, we show that CUL3 knockdown inhibits primary root growth by reducing root meristem size and cell number. This phenotype is suppressed by ethylene-insensitive or resistant mutations. Finally, we identify a function of CUL3 in distal root patterning, by a mechanism that is independent of ethylene. Thus, our work highlights that CUL3 is essential for the normal division and organisation of the root stem cell niche and columella root cap cells.


Assuntos
Arabidopsis/genética , Proteínas de Transporte/fisiologia , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/genética , Linhagem Celular , Cotilédone/crescimento & desenvolvimento , Proteínas Culina , Liases/genética , Liases/metabolismo , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética
13.
Cell Rep ; 39(2): 110671, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35417704

RESUMO

RNA silencing is a conserved mechanism in eukaryotes involved in development and defense against viruses. In plants, ARGONAUTE1 (AGO1) protein plays a central role in both microRNA- and small interfering RNA-directed silencing, and its expression is regulated at multiple levels. Here, we report that the F-box protein FBW2 assembles an SCF complex that selectively targets for proteolysis AGO1 when it is unloaded and mutated. Although FBW2 loss of function does not lead to strong growth or developmental defects, it significantly increases RNA-silencing activity. Interestingly, under conditions in which small-RNA accumulation is affected, the failure to degrade AGO1 in fbw2 mutants becomes more deleterious for the plant. Accordingly, the non-degradable AGO1 protein assembles high-molecular-weight complexes and binds illegitimate small RNA, leading to off-target cleavage. Therefore, control of AGO1 homeostasis by FBW2 plays an important role in quality control of RNA silencing.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Argonautas , Proteínas F-Box , MicroRNAs , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , MicroRNAs/genética , Interferência de RNA , RNA Interferente Pequeno/genética
14.
PLoS Genet ; 4(6): e1000093, 2008 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-18551167

RESUMO

Plants use the energy in sunlight for photosynthesis, but as a consequence are exposed to the toxic effect of UV radiation especially on DNA. The UV-induced lesions on DNA affect both transcription and replication and can also have mutagenic consequences. Here we investigated the regulation and the function of the recently described CUL4-DDB1-DDB2 E3 ligase in the maintenance of genome integrity upon UV-stress using the model plant Arabidopsis. Physiological, biochemical, and genetic evidences indicate that this protein complex is involved in global genome repair (GGR) of UV-induced DNA lesions. Moreover, we provide evidences for crosstalks between GGR, the plant-specific photo reactivation pathway and the RAD1-RAD10 endonucleases upon UV exposure. Finally, we report that DDB2 degradation upon UV stress depends not only on CUL4, but also on the checkpoint protein kinase Ataxia telangiectasia and Rad3-related (ATR). Interestingly, we found that DDB1A shuttles from the cytoplasm to the nucleus in an ATR-dependent manner, highlighting an upstream level of control and a novel mechanism of regulation of this E3 ligase.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Proteínas Culina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Genoma de Planta/efeitos da radiação , Raios Ultravioleta , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/genética , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Culina/análise , Proteínas Culina/genética , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Mutagênese Insercional , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/efeitos da radiação , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Tolerância a Radiação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Dev Cell ; 9(1): 109-19, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15992545

RESUMO

The plant hormone auxin has been implicated in virtually every aspect of plant growth and development. Auxin acts by promoting the degradation of transcriptional regulators called Aux/IAA proteins. Aux/IAA degradation requires TIR1, an F box protein that has been shown to function as an auxin receptor. However, loss of TIR1 has a modest effect on auxin response and plant development. Here we show that three additional F box proteins, called AFB1, 2, and 3, also regulate auxin response. Like TIR1, these proteins interact with the Aux/IAA proteins in an auxin-dependent manner. Plants that are deficient in all four proteins are auxin insensitive and exhibit a severe embryonic phenotype similar to the mp/arf5 and bdl/iaa12 mutants. Correspondingly, all TIR1/AFB proteins interact with BDL, and BDL is stabilized in triple mutant plants. Our results indicate that TIR1 and the AFB proteins collectively mediate auxin responses throughout plant development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Proteínas F-Box/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas F-Box/genética , Ácidos Indolacéticos/genética , Mutação , Plantas Geneticamente Modificadas , Receptores de Superfície Celular/genética , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Curr Opin Plant Biol ; 9(6): 631-8, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17005440

RESUMO

The ubiquitin proteasome system is a key regulator of many biological processes in all eukaryotes. This mechanism employs several types of enzymes, the most important of which are the ubiquitin E3 ligases that catalyse the attachment of polyubiquitin chains to target proteins for their subsequent degradation by the 26S proteasome. Among the E3 families, the SCF is the best understood; it consists of a multi-protein complex in which the F-box protein plays a crucial role by recruiting the target substrate. Strikingly, nearly 700 F-box proteins have been predicted in Arabidopsis, suggesting that plants have the capacity to assemble a multitude of SCF complexes, possibly controlling the stability of hundreds of substrates involved in a plethora of biological processes. Interestingly, viruses and even pathogenic bacteria have also found ways to hijack the plant SCF and to reprogram it for their own purposes.


Assuntos
Proteínas F-Box/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo
17.
Mol Biol Cell ; 13(6): 1916-28, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12058059

RESUMO

The SCF (for SKP1, Cullin/CDC53, F-box protein) ubiquitin ligase targets a number of cell cycle regulators, transcription factors, and other proteins for degradation in yeast and mammalian cells. Recent genetic studies demonstrate that plant F-box proteins are involved in auxin responses, jasmonate signaling, flower morphogenesis, photocontrol of circadian clocks, and leaf senescence, implying a large spectrum of functions for the SCF pathway in plant development. Here, we present a molecular and functional characterization of plant cullins. The Arabidopsis genome contains 11 cullin-related genes. Complementation assays revealed that AtCUL1 but not AtCUL4 can functionally complement the yeast cdc53 mutant. Arabidopsis mutants containing transfer DNA (T-DNA) insertions in the AtCUL1 gene were shown to display an arrest in early embryogenesis. Consistently, both the transcript and the protein of the AtCUL1 gene were found to accumulate in embryos. The AtCUL1 protein localized mainly in the nucleus but also weakly in the cytoplasm during interphase and colocalized with the mitotic spindle in metaphase. Our results demonstrate a critical role for the SCF ubiquitin ligase in Arabidopsis embryogenesis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas Culina , Proteínas de Saccharomyces cerevisiae , Sequência de Aminoácidos , Arabidopsis/embriologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/ultraestrutura , Citoplasma/ultraestrutura , Deleção de Genes , Vetores Genéticos , Metáfase , Dados de Sequência Molecular , Morfogênese , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Reprodução/genética , Reprodução/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Fuso Acromático/ultraestrutura , Transformação Genética
18.
Gene ; 290(1-2): 63-71, 2002 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-12062802

RESUMO

Real interesting new gene (RING) finger proteins act as E3 ubiquitin-protein ligases and play critical roles in targeting the destruction of proteins of diverse functions in all eukaryotes, ranging from yeast to mammals. Arabidopsis genome contains a large number of genes encoding RING finger proteins. In this report we describe the identification of more than 40 RING-H2 finger proteins that are of small size, not more than 200 amino acids, and contain no other recognizable protein-protein interaction domain(s). We characterize RHA2b, one of these small RING-H2 finger genes. A gene trap line, SGT6304, was identified to contain a Dissociation (Ds) insertion in RHA2b gene. No RHA2b transcript was detected in the homozygous SGT6304 plants. Despite the elimination of RHA2b function, homozygous SGT6304 plants lacked detectable growth or development defects, suggesting functional redundancy of RHA2b with other RING finger genes. Expression of RHA2b was specifically active in vascular tissue and in upper pistil of inflorescence as well as in root tip and shoot apical meristem region. Potential functions of ubiquitin-proteolysis pathway in vascular formation and in fertilization are discussed.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Elementos de DNA Transponíveis/genética , Dedos de Zinco/genética , Sequência de Aminoácidos , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Northern Blotting , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genoma de Planta , Homozigoto , Ácidos Indolacéticos/farmacologia , Leupeptinas/farmacologia , Dados de Sequência Molecular , Mutagênese Insercional , Mutação , Fenótipo , Filogenia , RNA de Plantas/genética , RNA de Plantas/metabolismo , Homologia de Sequência de Aminoácidos , Transcrição Gênica/efeitos dos fármacos
19.
Nat Commun ; 4: 2496, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24051655

RESUMO

Auxin is a major plant hormone that controls most aspects of plant growth and development. Auxin is perceived by two distinct classes of receptors: transport inhibitor response 1 (TIR1, or auxin-related F-box (AFB)) and auxin/indole-3-acetic acid (AUX/IAA) coreceptors, that control transcriptional responses to auxin, and the auxin-binding protein 1 (ABP1), that controls a wide variety of growth and developmental processes. To date, the mode of action of ABP1 is still poorly understood and its functional interaction with TIR1/AFB-AUX/IAA coreceptors remains elusive. Here we combine genetic and biochemical approaches to gain insight into the integration of these two pathways. We find that ABP1 is genetically upstream of TIR1/AFBs; ABP1 knockdown leads to an enhanced degradation of AUX/IAA repressors, independently of its effects on endocytosis, through the SCF(TIR1/AFB) E3 ubiquitin ligase pathway. Combining positive and negative regulation of SCF ubiquitin-dependent pathways might be a common mechanism conferring tight control of hormone-mediated responses.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas F-Box/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Receptores de Superfície Celular/genética , Transdução de Sinais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas F-Box/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/metabolismo , Estabilidade Proteica , Proteólise , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA