Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 37(7): 922-925, 1998 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29711490

RESUMO

A small variation in the substituent R' on the metallocene catalyst employed in the copolymerization of ethene and propene leads to a highly alternating (81-83%) structure (1) rather than a statistical copolymer. Such copolymers were until recently only accessible by hydrogenation of polyisoprene or 1,4-poly(pentadiene).

3.
J Am Chem Soc ; 124(51): 15280-5, 2002 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-12487603

RESUMO

Tandem catalysis in a single medium presents challenges and opportunities for creating novel synthetic protocols. Thus far, only two homogeneous catalysts have been used in tandem. Herein, we report that it is possible to coordinate the action of three well-defined homogeneous catalysts to produce a wide range of branched polyethylenes from a single monomer. Thus, ([(eta(5)-C(5)Me(4))SiMe(2)(eta(1)-NCMe(3))]TiMe)(MeB(C(6)F(5))(3)) (1), [(C(6)H(5))(2)PC(6)H(4)C(OB(C(6)F(5))(3))O-kappa(2)P,O]Ni(eta(3)-CH(2)C(6)H(5)) (2), and ((H(3)C)C[N(C(6)H(5))]C[O-B(C(6)F(5))(3)][N(C(6)H(5))]-kappa(2)N,N)Ni(eta(3)-CH(2)C(6)H(5)) (3) react with ethylene to produce branched polyethylene with structures that cannot be obtained using a single- or a two-component catalyst combination. The properties of the polyethylene depend on the ratio of the three catalysts. High-throughput screening techniques proved essential for optimizing reaction conditions and for probing how the catalyst composition influences the polymer properties.

4.
Chem Rec ; 2(4): 278-89, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12203910

RESUMO

The discovery of new olefin polymerization catalysts is currently a time-intensive trial-and-error process with no guarantee of success. A fully integrated high-throughput screening workflow for the discovery of new catalysts for polyolefin production has been implemented at Symyx Technologies. The workflow includes the design of the metal-ligand libraries using custom-made computer software, automated delivery of metal precursors and ligands into the reactors using a liquid-handling robot, and a rapid primary screen that serves to assess the potential of each metalligand-activator combination as an olefin polymerization catalyst. "Hits" from the primary screen are subjected to secondary screens using a 48-cell parallel polymerization reactor. Individual polymerization reactions are monitored in real time under conditions that provide meaningful information about the performance capabilities of each catalyst. Rapid polymer characterization techniques support the primary and secondary screens. We have discovered many new and interesting catalyst classes using this technology.

5.
J Am Chem Soc ; 125(14): 4306-17, 2003 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-12670253

RESUMO

For the first time, new catalysts for olefin polymerization have been discovered through the application of fully integrated high-throughput primary and secondary screening techniques supported by rapid polymer characterization methods. Microscale 1-octene primary screening polymerization experiments combining arrays of ligands with reactive metal complexes M(CH(2)Ph)(4) (M = Zr, Hf) and multiple activation conditions represent a new high-throughput technique for discovering novel group (IV) polymerization catalysts. The primary screening methods described here have been validated using a commercially relevant polyolefin catalyst, and implemented rapidly to discover the new amide-ether based hafnium catalyst [eta(2)-(N,O)[bond](2-MeO[bond]C(6)H(4))(2,4,6-Me(3)C(6)H(2))N]Hf(CH(2)Ph)(3) (1), which is capable of polymerizing 1-octene to high conversion. The molecular structure of 1 has been determined by X-ray diffraction. Larger scale secondary screening experiments performed on a focused 96-member amine-ether library demonstrated the versatile high temperature ethylene-1-octene copolymerization capabilities of this catalyst class, and led to significant performance improvements over the initial primary screening discovery. Conventional one gallon batch reactor copolymerizations performed using selected amide-ether hafnium compounds confirmed the performance features of this new catalyst class, serving to fully validate the experimental results from the high-throughput approaches described herein.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA