Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(W1): W623-W632, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35552456

RESUMO

The Orthology Benchmark Service (https://orthology.benchmarkservice.org) is the gold standard for orthology inference evaluation, supported and maintained by the Quest for Orthologs consortium. It is an essential resource to compare existing and new methods of orthology inference (the bedrock for many comparative genomics and phylogenetic analysis) over a standard dataset and through common procedures. The Quest for Orthologs Consortium is dedicated to maintaining the resource up to date, through regular updates of the Reference Proteomes and increasingly accessible data through the OpenEBench platform. For this update, we have added a new benchmark based on curated orthology assertion from the Vertebrate Gene Nomenclature Committee, and provided an example meta-analysis of the public predictions present on the platform.


Assuntos
Benchmarking , Genômica , Filogenia , Genômica/métodos , Proteoma
2.
J Invertebr Pathol ; 206: 108153, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38866297

RESUMO

Introduced into Europe from North America 150 years ago alongside its native crayfish hosts, the invasive pathogen Aphanomyces astaci is considered one of the main causes of European crayfish population decline. For the past two centuries, this oomycete pathogen has been extensively studied, with the more recent efforts focused on containing and monitoring its spread across the continent. However, after the recent introduction of new strains, the newly-discovered diversity of A. astaci in North America and several years of coevolution with its European host, a new assessment of the traits linked to the pathogen's virulence is much needed. To fill this gap, we investigated the presence of phenotypic patterns (i.e., in vitro growth and sporulation rates) possibly associated with the pathogen's virulence (i.e., induced mortality in crayfish) in a collection of 14 A. astaci strains isolated both in North America and in Europe. The results highlighted a high variability in virulence, growth rate and motile spore production among the different strains, while the total-sporulation rate was more similar across strains. Surprisingly, growth and sporulation rates were not significantly correlated with virulence. Furthermore, none of the analysed parameters, including virulence, was significantly different among the major A. astaci haplogroups. These results indicate that each strain is defined by a characteristic combination of pathogenic features, specifically assembled for the environment and host faced by each strain. Thus, canonical mitochondrial markers, often used to infer the pathogen's virulence, are not accurate tools to deduce the phenotype of A. astaci strains. As the diversity of A. astaci strains in Europe is bound to increase due to translocations of new carrier crayfish species from North America, there is an urgent need to deepen our understanding of A. astaci's virulence variability and its ability to adapt to new hosts and environments.

3.
BMC Genomics ; 23(1): 600, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35989333

RESUMO

BACKGROUND: For over a century, scientists have studied host-pathogen interactions between the crayfish plague disease agent Aphanomyces astaci and freshwater crayfish. It has been hypothesised that North American crayfish hosts are disease-resistant due to the long-lasting coevolution with the pathogen. Similarly, the increasing number of latent infections reported in the historically sensitive European crayfish hosts seems to indicate that similar coevolutionary processes are occurring between European crayfish and A. astaci. Our current understanding of these host-pathogen interactions is largely focused on the innate immunity processes in the crayfish haemolymph and cuticle, but the molecular basis of the observed disease-resistance and susceptibility remain unclear. To understand how coevolution is shaping the host's molecular response to the pathogen, susceptible native European noble crayfish and invasive disease-resistant marbled crayfish were challenged with two A. astaci strains of different origin: a haplogroup A strain (introduced to Europe at least 50 years ago, low virulence) and a haplogroup B strain (signal crayfish in lake Tahoe, USA, high virulence). Here, we compare the gene expression profiles of the hepatopancreas, an integrated organ of crayfish immunity and metabolism. RESULTS: We characterised several novel innate immune-related gene groups in both crayfish species. Across all challenge groups, we detected 412 differentially expressed genes (DEGs) in the noble crayfish, and 257 DEGs in the marbled crayfish. In the noble crayfish, a clear immune response was detected to the haplogroup B strain, but not to the haplogroup A strain. In contrast, in the marbled crayfish we detected an immune response to the haplogroup A strain, but not to the haplogroup B strain. CONCLUSIONS: We highlight the hepatopancreas as an important hub for the synthesis of immune molecules in the response to A. astaci. A clear distinction between the innate immune response in the marbled crayfish and the noble crayfish is the capability of the marbled crayfish to mobilise a higher variety of innate immune response effectors. With this study we outline that the type and strength of the host immune response to the pathogen is strongly influenced by the coevolutionary history of the crayfish with specific A. astaci strains.


Assuntos
Aphanomyces , Animais , Aphanomyces/genética , Astacoidea/genética , Resistência à Doença , Lagos , Transcriptoma
4.
Mol Biol Evol ; 38(8): 3033-3045, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-33822172

RESUMO

Accurate determination of the evolutionary relationships between genes is a foundational challenge in biology. Homology-evolutionary relatedness-is in many cases readily determined based on sequence similarity analysis. By contrast, whether or not two genes directly descended from a common ancestor by a speciation event (orthologs) or duplication event (paralogs) is more challenging, yet provides critical information on the history of a gene. Since 2009, this task has been the focus of the Quest for Orthologs (QFO) Consortium. The sixth QFO meeting took place in Okazaki, Japan in conjunction with the 67th National Institute for Basic Biology conference. Here, we report recent advances, applications, and oncoming challenges that were discussed during the conference. Steady progress has been made toward standardization and scalability of new and existing tools. A feature of the conference was the presentation of a panel of accessible tools for phylogenetic profiling and several developments to bring orthology beyond the gene unit-from domains to networks. This meeting brought into light several challenges to come: leveraging orthology computations to get the most of the incoming avalanche of genomic data, integrating orthology from domain to biological network levels, building better gene models, and adapting orthology approaches to the broad evolutionary and genomic diversity recognized in different forms of life and viruses.


Assuntos
Especiação Genética , Genômica/tendências , Filogenia , Genoma Viral , Genômica/métodos
5.
Nucleic Acids Res ; 48(W1): W538-W545, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32374845

RESUMO

The identification of orthologs-genes in different species which descended from the same gene in their last common ancestor-is a prerequisite for many analyses in comparative genomics and molecular evolution. Numerous algorithms and resources have been conceived to address this problem, but benchmarking and interpreting them is fraught with difficulties (need to compare them on a common input dataset, absence of ground truth, computational cost of calling orthologs). To address this, the Quest for Orthologs consortium maintains a reference set of proteomes and provides a web server for continuous orthology benchmarking (http://orthology.benchmarkservice.org). Furthermore, consensus ortholog calls derived from public benchmark submissions are provided on the Alliance of Genome Resources website, the joint portal of NIH-funded model organism databases.


Assuntos
Família Multigênica , Proteoma , Software , Animais , Benchmarking , Consenso , Genômica , Humanos , Camundongos , Filogenia , Ratos
6.
Nucleic Acids Res ; 47(D1): D411-D418, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30380106

RESUMO

OrthoInspector is one of the leading software suites for orthology relations inference. In this paper, we describe a major redesign of the OrthoInspector online resource along with a significant increase in the number of species: 4753 organisms are now covered across the three domains of life, making OrthoInspector the most exhaustive orthology resource to date in terms of covered species (excluding viruses). The new website integrates original data exploration and visualization tools in an ergonomic interface. Distributions of protein orthologs are represented by heatmaps summarizing their evolutionary histories, and proteins with similar profiles can be directly accessed. Two novel tools have been implemented for comparative genomics: a phylogenetic profile search that can be used to find proteins with a specific presence-absence profile and investigate their functions and, inversely, a GO profiling tool aimed at deciphering evolutionary histories of molecular functions, processes or cell components. In addition to the re-designed website, the OrthoInspector resource now provides a REST interface for programmatic access. OrthoInspector 3.0 is available at http://lbgi.fr/orthoinspectorv3.


Assuntos
Bases de Dados Genéticas , Genômica , Algoritmos , Bactérias/genética , Classificação , Eucariotos/genética , Evolução Molecular , Previsões , Ontologia Genética , Internet , Filogenia , Proteoma , Homologia de Sequência do Ácido Nucleico , Software , Especificidade da Espécie
7.
Nat Methods ; 13(5): 425-30, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27043882

RESUMO

Achieving high accuracy in orthology inference is essential for many comparative, evolutionary and functional genomic analyses, yet the true evolutionary history of genes is generally unknown and orthologs are used for very different applications across phyla, requiring different precision-recall trade-offs. As a result, it is difficult to assess the performance of orthology inference methods. Here, we present a community effort to establish standards and an automated web-based service to facilitate orthology benchmarking. Using this service, we characterize 15 well-established inference methods and resources on a battery of 20 different benchmarks. Standardized benchmarking provides a way for users to identify the most effective methods for the problem at hand, sets a minimum requirement for new tools and resources, and guides the development of more accurate orthology inference methods.


Assuntos
Biologia Computacional/normas , Genômica/normas , Filogenia , Proteômica/normas , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Eucariotos/classificação , Eucariotos/genética , Ontologia Genética , Genômica/métodos , Modelos Genéticos , Proteômica/métodos , Análise de Sequência de Proteína , Homologia de Sequência , Especificidade da Espécie
8.
Bioinformatics ; 34(19): 3390-3392, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29741582

RESUMO

Summary: Comparative studies of protein sequences are widely used in evolutionary and comparative genomics studies, but there is a lack of efficient tools to identify conserved regions ab initio within a protein multiple alignment. PROBE provides a fully automatic analysis of protein family conservation, to identify conserved regions, or 'blocks', that may correspond to structural/functional domains or motifs. Conserved blocks are identified at two different levels: (i) family level blocks indicate sites that are probably of central importance to the protein's structure or function, and (ii) sub-family level blocks highlight regions that may signify functional specialization, such as binding partners, etc. All conserved blocks are mapped onto a phylogenetic tree and can also be visualized in the context of the multiple sequence alignment. PROBE thus facilitates in-depth studies of sequence-structure-function-evolution relationships, and opens the way to block-level phylogenetic profiling. Availability and implementation: Freely available on the web at http://www.lbgi.fr/∼julie/probe/web.


Assuntos
Evolução Molecular , Proteínas/genética , Software , Sequência de Aminoácidos , Biologia Computacional , Sequência Conservada , Filogenia , Alinhamento de Sequência
9.
Mol Biol Evol ; 34(8): 2016-2034, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28460059

RESUMO

Cilia (flagella) are important eukaryotic organelles, present in the Last Eukaryotic Common Ancestor, and are involved in cell motility and integration of extracellular signals. Ciliary dysfunction causes a class of genetic diseases, known as ciliopathies, however current knowledge of the underlying mechanisms is still limited and a better characterization of genes is needed. As cilia have been lost independently several times during evolution and they are subject to important functional variation between species, ciliary genes can be investigated through comparative genomics. We performed phylogenetic profiling by predicting orthologs of human protein-coding genes in 100 eukaryotic species. The analysis integrated three independent methods to predict a consensus set of 274 ciliary genes, including 87 new promising candidates. A fine-grained analysis of the phylogenetic profiles allowed a partitioning of ciliary genes into modules with distinct evolutionary histories and ciliary functions (assembly, movement, centriole, etc.) and thus propagation of potential annotations to previously undocumented genes. The cilia/basal body localization was experimentally confirmed for five of these previously unannotated proteins (LRRC23, LRRC34, TEX9, WDR27, and BIVM), validating the relevance of our approach. Furthermore, our multi-level analysis sheds light on the core gene sets retained in gamete-only flagellates or Ecdysozoa for instance. By combining gene-centric and species-oriented analyses, this work reveals new ciliary and ciliopathy gene candidates and provides clues about the evolution of ciliary processes in the eukaryotic domain. Additionally, the positive and negative reference gene sets and the phylogenetic profile of human genes constructed during this study can be exploited in future work.


Assuntos
Cílios/genética , Ciliopatias/genética , Animais , Movimento Celular/genética , Cílios/metabolismo , Ciliopatias/metabolismo , Bases de Dados de Ácidos Nucleicos , Eucariotos , Células Eucarióticas , Evolução Molecular , Flagelos/genética , Flagelos/metabolismo , Genômica , Humanos , Filogenia , Análise de Sequência de DNA/métodos
10.
J Med Internet Res ; 19(6): e212, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28623182

RESUMO

BACKGROUND: The constant and massive increase of biological data offers unprecedented opportunities to decipher the function and evolution of genes and their roles in human diseases. However, the multiplicity of sources and flow of data mean that efficient access to useful information and knowledge production has become a major challenge. This challenge can be addressed by taking inspiration from Web 2.0 and particularly social networks, which are at the forefront of big data exploration and human-data interaction. OBJECTIVE: MyGeneFriends is a Web platform inspired by social networks, devoted to genetic disease analysis, and organized around three types of proactive agents: genes, humans, and genetic diseases. The aim of this study was to improve exploration and exploitation of biological, postgenomic era big data. METHODS: MyGeneFriends leverages conventions popularized by top social networks (Facebook, LinkedIn, etc), such as networks of friends, profile pages, friendship recommendations, affinity scores, news feeds, content recommendation, and data visualization. RESULTS: MyGeneFriends provides simple and intuitive interactions with data through evaluation and visualization of connections (friendships) between genes, humans, and diseases. The platform suggests new friends and publications and allows agents to follow the activity of their friends. It dynamically personalizes information depending on the user's specific interests and provides an efficient way to share information with collaborators. Furthermore, the user's behavior itself generates new information that constitutes an added value integrated in the network, which can be used to discover new connections between biological agents. CONCLUSIONS: We have developed MyGeneFriends, a Web platform leveraging conventions from popular social networks to redefine the relationship between humans and biological big data and improve human processing of biomedical data. MyGeneFriends is available at lbgi.fr/mygenefriends.


Assuntos
Doenças Genéticas Inatas/genética , Testes Genéticos/métodos , Rede Social , Telemedicina/estatística & dados numéricos , Amigos , Humanos , Pesquisadores
11.
Am J Hum Genet ; 92(1): 67-75, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23246293

RESUMO

Congenital stationary night blindness (CSNB) is a clinically and genetically heterogeneous retinal disorder. Two forms can be distinguished clinically: complete CSNB (cCSNB) and incomplete CSNB. Individuals with cCSNB have visual impairment under low-light conditions and show a characteristic electroretinogram (ERG). The b-wave amplitude is severely reduced in the dark-adapted state of the ERG, representing abnormal function of ON bipolar cells. Furthermore, individuals with cCSNB can show other ocular features such as nystagmus, myopia, and strabismus and can have reduced visual acuity and abnormalities of the cone ERG waveform. The mode of inheritance of this form can be X-linked or autosomal recessive, and the dysfunction of four genes (NYX, GRM6, TRPM1, and GPR179) has been described so far. Whole-exome sequencing in one simplex cCSNB case lacking mutations in the known genes led to the identification of a missense mutation (c.983G>A [p.Cys328Tyr]) and a nonsense mutation (c.1318C>T [p.Arg440(∗)]) in LRIT3, encoding leucine-rich-repeat (LRR), immunoglobulin-like, and transmembrane-domain 3 (LRIT3). Subsequent Sanger sequencing of 89 individuals with CSNB identified another cCSNB case harboring a nonsense mutation (c.1151C>G [p.Ser384(∗)]) and a deletion predicted to lead to a premature stop codon (c.1538_1539del [p.Ser513Cysfs(∗)59]) in the same gene. Human LRIT3 antibody staining revealed in the outer plexiform layer of the human retina a punctate-labeling pattern resembling the dendritic tips of bipolar cells; similar patterns have been observed for other proteins implicated in cCSNB. The exact role of this LRR protein in cCSNB remains to be elucidated.


Assuntos
Oftalmopatias Hereditárias/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Proteínas de Membrana/genética , Miopia/genética , Cegueira Noturna/genética , Polimorfismo Genético , Exoma , Feminino , Humanos , Masculino , Proteínas de Membrana/análise , Pessoa de Meia-Idade , Mutação , Retina/química
12.
Bioinformatics ; 31(3): 447-8, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25273105

RESUMO

SUMMARY: We previously developed OrthoInspector, a package incorporating an original algorithm for the detection of orthology and inparalogy relations between different species. We have added new functionalities to the package. While its original algorithm was not modified, performing similar orthology predictions, we facilitated the prediction of very large databases (thousands of proteomes), refurbished its graphical interface, added new visualization tools for comparative genomics/protein family analysis and facilitated its deployment in a network environment. Finally, we have released three online databases of precomputed orthology relationships. AVAILABILITY: Package and databases are freely available at http://lbgi.fr/orthoinspector with all major browsers supported. CONTACT: odile.lecompte@unistra.fr SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Gráficos por Computador , Bases de Dados Factuais , Proteômica/métodos , Análise de Sequência de Proteína/métodos , Software , Humanos , Anotação de Sequência Molecular , Filogenia
13.
BMC Evol Biol ; 15: 222, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26459560

RESUMO

BACKGROUND: Transposable elements (TE) have attracted much attention since they shape the genome and contribute to species evolution. Organisms have evolved mechanisms to control TE activity. Testis expressed 19 (Tex19) represses TE expression in mouse testis and placenta. In the human and mouse genomes, Tex19 and Secreted and transmembrane 1 (Sectm1) are neighbors but are not homologs. Sectm1 is involved in immunity and its molecular phylogeny is unknown. METHODS: Using multiple alignments of complete protein sequences (MACS), we inferred Tex19 and Sectm1 molecular phylogenies. Protein conserved regions were identified and folds were predicted. Finally, expression patterns were studied across tissues and species using RNA-seq public data and RT-PCR. RESULTS: We present 2 high quality alignments of 58 Tex19 and 58 Sectm1 protein sequences from 48 organisms. First, both genes are eutherian-specific, i.e., exclusively present in mammals except monotremes (platypus) and marsupials. Second, Tex19 and Sectm1 have both duplicated in Sciurognathi and Bovidae while they have remained as single copy genes in all further placental mammals. Phylogenetic concordance between both genes was significant (p-value < 0.05) and supported co-evolution and functional relationship. At the protein level, Tex19 exhibits 3 conserved regions and 4 invariant cysteines. In particular, a CXXC motif is present in the N-terminal conserved region. Sectm1 exhibits 2 invariant cysteines and an Ig-like domain. Strikingly, Tex19 C-terminal conserved region was lost in Haplorrhini primates while a Sectm1 C-terminal extra domain was acquired. Finally, we have determined that Tex19 and Sectm1 expression levels anti-correlate across the testis of several primates (ρ = -0.72) which supports anti-regulation. CONCLUSIONS: Tex19 and Sectm1 co-evolution and anti-regulated expressions support a strong functional relationship between both genes. Since Tex19 operates a control on TE and Sectm1 plays a role in immunity, Tex19 might suppress an immune response directed against cells that show TE activity in eutherian reproductive tissues.


Assuntos
Evolução Molecular , Mamíferos/genética , Proteínas de Membrana/genética , Proteínas Nucleares/genética , Sequência de Aminoácidos , Animais , Feminino , Expressão Gênica , Humanos , Masculino , Mamíferos/classificação , Mamíferos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Camundongos , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Filogenia , Placenta/metabolismo , Gravidez , Proteínas de Ligação a RNA , Ratos , Retroelementos , Testículo/metabolismo
14.
Am J Hum Genet ; 90(2): 321-30, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22325361

RESUMO

Congenital stationary night blindness (CSNB) is a heterogeneous retinal disorder characterized by visual impairment under low light conditions. This disorder is due to a signal transmission defect from rod photoreceptors to adjacent bipolar cells in the retina. Two forms can be distinguished clinically, complete CSNB (cCSNB) or incomplete CSNB; the two forms are distinguished on the basis of the affected signaling pathway. Mutations in NYX, GRM6, and TRPM1, expressed in the outer plexiform layer (OPL) lead to disruption of the ON-bipolar cell response and have been seen in patients with cCSNB. Whole-exome sequencing in cCSNB patients lacking mutations in the known genes led to the identification of a homozygous missense mutation (c.1807C>T [p.His603Tyr]) in one consanguineous autosomal-recessive cCSNB family and a homozygous frameshift mutation in GPR179 (c.278delC [p.Pro93Glnfs(∗)57]) in a simplex male cCSNB patient. Additional screening with Sanger sequencing of 40 patients identified three other cCSNB patients harboring additional allelic mutations in GPR179. Although, immunhistological studies revealed Gpr179 in the OPL in wild-type mouse retina, Gpr179 did not colocalize with specific ON-bipolar markers. Interestingly, Gpr179 was highly concentrated in horizontal cells and Müller cell endfeet. The involvement of these cells in cCSNB and the specific function of GPR179 remain to be elucidated.


Assuntos
Exoma , Mutação , Miopia/genética , Cegueira Noturna/genética , Receptores Acoplados a Proteínas G/genética , Alelos , Animais , Eletrorretinografia/métodos , Oftalmopatias Hereditárias , Feminino , Doenças Genéticas Ligadas ao Cromossomo X , Heterogeneidade Genética , Técnicas de Genotipagem/métodos , Heterozigoto , Homozigoto , Humanos , Masculino , Camundongos , Fenótipo , Polimorfismo de Nucleotídeo Único , Estrutura Terciária de Proteína , Proteoglicanas/genética , Receptores de Glutamato Metabotrópico/genética , Retina/anormalidades , Canais de Cátion TRPM/genética
15.
Bioinformatics ; 29(20): 2643-4, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23929031

RESUMO

SUMMARY: We present PARSEC (PAtteRn Search and Contextualization), a new open source platform for guided discovery, allowing localization and biological characterization of short genomic sites in entire eukaryotic genomes. PARSEC can search for a sequence or a degenerated pattern. The retrieved set of genomic sites can be characterized in terms of (i) conservation in model organisms, (ii) genomic context (proximity to genes) and (iii) function of neighboring genes. These modules allow the user to explore, visualize, filter and extract biological knowledge from a set of short genomic regions such as transcription factor binding sites. AVAILABILITY: Web site implemented in Java, JavaScript and C++, with all major browsers supported. Freely available at lbgi.fr/parsec. Source code is freely available at sourceforge.net/projects/genomicparsec.


Assuntos
Genômica/métodos , Algoritmos , Genoma , Humanos , Internet , Dinâmica não Linear , Linguagens de Programação , Software
16.
Nucleic Acids Res ; 40(Web Server issue): W71-5, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22641855

RESUMO

A major challenge in the post-genomic era is a better understanding of how human genetic alterations involved in disease affect the gene products. The KD4v (Comprehensible Knowledge Discovery System for Missense Variant) server allows to characterize and predict the phenotypic effects (deleterious/neutral) of missense variants. The server provides a set of rules learned by Induction Logic Programming (ILP) on a set of missense variants described by conservation, physico-chemical, functional and 3D structure predicates. These rules are interpretable by non-expert humans and are used to accurately predict the deleterious/neutral status of an unknown mutation. The web server is available at http://decrypthon.igbmc.fr/kd4v.


Assuntos
Doença/genética , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único , Software , Estudos de Associação Genética , Humanos , Internet , Bases de Conhecimento , Fenótipo , Proteínas/química , Proteínas/genética
17.
Genomics ; 101(3): 178-86, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23147676

RESUMO

TFIIH is a eukaryotic complex composed of two subcomplexes, the CAK (Cdk activating kinase) and the core-TFIIH. The core-TFIIH, composed of seven subunits (XPB, XPD, P62, P52, P44, P34, and P8), plays a crucial role in transcription and repair. Here, we performed an extended sequence analysis to establish the accurate phylogenetic distribution of the core-TFIIH in 63 eukaryotic organisms. In spite of the high conservation of the seven subunits at the sequence and genomic levels, the non-enzymatic P8, P34, P52 and P62 are absent from one or a few unicellular species. To gain insight into their respective roles, we undertook a comparative genomic analysis of the whole proteome to identify the gene sets sharing similar presence/absence patterns. While little information was inferred for P8 and P62, our studies confirm the known role of P52 in repair and suggest for the first time the implication of the core TFIIH in mRNA splicing via P34.


Assuntos
Evolução Molecular , Complexos Multiproteicos/genética , Filogenia , Fator de Transcrição TFIIH/genética , Animais , Quinases Ciclina-Dependentes/genética , Proteínas de Ligação a DNA , Humanos , Subunidades Proteicas/genética , Transcrição Gênica
18.
BMC Ecol Evol ; 24(1): 78, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862896

RESUMO

BACKGROUND: Biodiversity in freshwater ecosystems is declining due to an increased anthropogenic footprint. Freshwater crayfish are keystone species in freshwater ecosystems and play a crucial role in shaping the structure and function of their habitats. The Idle Crayfish Austropotamobius bihariensis is a native European species with a narrow distribution range, endemic to the Apuseni Mountains (Romania). Although its area is small, the populations are anthropogenically fragmented. In this context, the assessment of its conservation status is timely. RESULTS: Using a reduced representation sequencing approach, we identified 4875 genomic SNPs from individuals belonging to 13 populations across the species distribution range. Subsequent population genomic analyses highlighted low heterozygosity levels, low number of private alleles and small effective population size. Our structuring analyses revealed that the genomic similarity of the populations is conserved within the river basins. CONCLUSION: Genomic SNPs represented excellent tools to gain insights into intraspecific genomic diversity and population structure of the Idle Crayfish. Our study highlighted that the analysed populations are at risk due to their limited genetic diversity, which makes them extremely vulnerable to environmental alterations. Thus, our results emphasize the need for conservation measures and can be used as a baseline to establish species management programs.


Assuntos
Astacoidea , Conservação dos Recursos Naturais , Polimorfismo de Nucleotídeo Único , Animais , Astacoidea/genética , Variação Genética/genética , Genômica/métodos
19.
J Mol Evol ; 76(5): 295-310, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23608997

RESUMO

Alvinella pompejana (Polychaeta, Alvinellidae) is one of the most thermotolerant marine eukaryotes known to date. It inhabits chimney walls of deep-sea hydrothermal vents along the East Pacific Rise (EPR) and is exposed to various challenging conditions (e.g. high temperature, hypoxia and the presence of sulphides, heavy metals and radiations), which increase the production of dangerous reactive oxygen species (ROS). Two different allelic forms of a manganese-superoxide dismutase involved in ROS detoxification, ApMnSOD1 and ApMnSOD2, and differing only by two substitutions (M110L and A138G) were identified in an A. pompejana cDNA library. RFLP screening of 60 individuals from different localities along the EPR showed that ApMnSOD2 was rare (2 %) and only found in the heterozygous state. Dynamic light scattering measurements and residual enzymatic activity experiments showed that the most frequent form (ApMnSOD1) was the most resistant to temperature. Their half-lives were similarly long at 65 °C (>110 min) but exhibited a twofold difference at 80 °C (20.8 vs 9.8 min). Those properties are likely to be explained by the occurrence of an additional sulphur-containing hydrogen bond involving the M110 residue and the effect of the A138 residue on the backbone entropy. Our results confirm the thermophily of A. pompejana and suggest that this locus is a good model to study how the extreme thermal heterogeneity of the vent conditions may help to maintain old rare variants in those populations.


Assuntos
Alelos , Mutação , Poliquetos/genética , Superóxido Dismutase/genética , Sequência de Aminoácidos , Animais , Escherichia coli/genética , Biblioteca Gênica , Meia-Vida , Temperatura Alta , Fontes Hidrotermais , Modelos Moleculares , Dados de Sequência Molecular , Oceanos e Mares , Poliquetos/enzimologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
20.
Nucleic Acids Res ; 39(8): 3116-27, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21177654

RESUMO

In the human genome, ∼ 10% of the genes are arranged head to head so that their transcription start sites reside within <1 kbp on opposite strands. In this configuration, a bidirectional promoter generally drives expression of the two genes. How bidirectional expression is performed from these particular promoters constitutes a puzzling question. Here, by a combination of in silico and biochemical approaches, we demonstrate that hStaf/ZNF143 is involved in controlling expression from a subset of divergent gene pairs. The binding sites for hStaf/ZNF143 (SBS) are overrepresented in bidirectional versus unidirectional promoters. Chromatin immunoprecipitation assays with a significant set of bidirectional promoters containing putative SBS revealed that 93% of them are associated with hStaf/ZNF143. Expression of dual reporter genes directed by bidirectional promoters are dependent on the SBS integrity and requires hStaf/ZNF143. Furthermore, in some cases, functional SBS are located in bidirectional promoters of gene pairs encoding a noncoding RNA and a protein gene. Remarkably, hStaf/ZNF143 per se exhibits an inherently bidirectional transcription activity, and together our data provide the demonstration that hStaf/ZNF143 is indeed a transcription factor controlling the expression of divergent protein-protein and protein-non-coding RNA gene pairs.


Assuntos
Regiões Promotoras Genéticas , Transativadores/fisiologia , Transcrição Gênica , Sítios de Ligação , DNA/química , Regulação para Baixo , Técnicas de Silenciamento de Genes , Genoma Humano , Células HeLa , Humanos , Proteínas/genética , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Análise de Sequência de DNA , Transativadores/genética , Transativadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA