Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Lett ; 39(12): 3480-3, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24978516

RESUMO

In this work, we demonstrate all-electronically tunable terahertz quantum cascade lasers (THz QCLs) with MEMS tuner structures. A two-stage MEMS tuner device is fabricated by a commercial open-foundry process performed by the company MEMSCAP. This provides an inexpensive, rapid, and reliable approach for MEMS tuner fabrication for THz QCLs with a high-precision alignment scheme. In order to electronically actuate the MEMS tuner device, an open-loop cryogenic piezo nanopositioning stage is integrated with the device chip. Our experimental result shows that at least 240 GHz of single-mode continuous electronic tuning can be achieved in cryogenic environments (∼4 K) without mode hopping. This provides an important step toward realizing turn-key bench-top tunable THz coherent sources for spectroscopic and coherent tomography applications.

2.
Opt Lett ; 37(2): 217-9, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22854472

RESUMO

The interfaces of a dielectric sample are resolved in reflection geometry using light from a frequency agile array of terahertz quantum-cascade lasers. The terahertz source is a 10-element linear array of third-order distributed-feedback QCLs emitting at discrete frequencies from 2.08 to 2.4 THz. Emission from the array is collimated and sent through a Michelson interferometer, with the sample placed in one of the arms. Interference signals collected at each frequency are used to reconstruct an interferogram and detect the interfaces in the sample. Because of the long coherence length of the source, the interferometer arms need not be adjusted to the zero-path delay. A depth resolution of 360 µm in the dielectric is achieved with further potential improvement through improved frequency coverage of the array. The entire experiment footprint is <1 m × 1 m with the source operated in a compact, closed-cycle cryocooler.

3.
Opt Lett ; 35(7): 910-2, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20364166

RESUMO

We demonstrate a frequency tunable external cavity terahertz quantum cascade laser using an abutted antireflection-coated silicon lens to reduce facet reflection and as a beam-forming element, with an external grating providing frequency selective optical feedback. Angle tuning of the grating allows a single longitudinal mode of the laser ridge to be selected, resulting in discontinuous tuning over a 165 GHz range around a center frequency of 4.4 THz. Another device exhibited 145 GHz of total tuning with 9 GHz of continuous tuning near the longitudinal modes of the laser.

4.
Opt Lett ; 30(19): 2563-5, 2005 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16208900

RESUMO

Real-time, continuous-wave terahertz imaging is demonstrated with a 10 mW, 2.52 THz (118.8 microm) far-infrared gas laser and a 160 x 120 element microbolometer camera. The microbolometer camera is designed for wavelengths of 7.5-14 microm but retains sensitivity at terahertz (THz) frequencies. The setup has no moving parts, and transmission-mode THz images can be obtained at the video rate of 60 frames/s. The peak signal-to-noise ratio is estimated to be 13 dB for a single frame of video, acquired in 16 ms. With this setup, THz imaging through a FedEx envelope is demonstrated, showing the feasibility of real-time mail screening.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA