Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(8): 4372-4377, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36753287

RESUMO

The inherent spin polarization present in photogenerated spin-correlated radical pairs makes them promising candidates for quantum computing and quantum sensing applications. The spin states of these systems can be probed and manipulated with microwave pulses using electron paramagnetic resonance spectrometers. However, to date, there are no reports on magnetic resonance-based spin measurements of photogenerated spin-correlated radical pairs hosted on quantum dots. In the current work, we prepare dye molecule-inorganic quantum dot conjugates and show that they can produce photogenerated spin-polarized states. The dye molecule, D131, is chosen for its ability to undergo efficient charge separation, and the nanoparticle materials, ZnO quantum dots, are chosen for their promising spin properties. Transient and steady state optical spectroscopy performed on ZnO quantum dot-D131 conjugates shows that reversible photogenerated charge separation is occurring. Transient and pulsed electron paramagnetic resonance experiments are then performed on the photogenerated radical pair, which demonstrate that (1) the radical pair is polarized at moderate temperatures and well modeled by existing theories and (2) the spin states can be accessed and manipulated with microwave pulses. This work opens the door to a new class of promising qubit materials that can be photogenerated in polarized states and hosted by highly tailorable inorganic nanoparticles.

2.
Nanoscale ; 16(11): 5624-5633, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38414382

RESUMO

Photocatalytic CO2 reduction offers a promising strategy to produce hydrocarbons without reliance on fossil fuels. Visible light-absorbing colloidal nanomaterials composed of earth-abundant metals suspended in aqueous media are particularly attractive owing to their low-cost, ease of separation, and highly modifiable surfaces. The current study explores such a system by employing water-soluble ZnSe quantum dots and a Co-based molecular catalyst. Water solubilization of the quantum dots is achieved with either carboxylate (3-mercaptopropionic acid) or ammonium (2-aminoethanethiol) functionalized ligands to produce nanoparticles with either negatively or positively-charged surfaces. Photocatalysis experiments are performed to compare the effectiveness of these two surface functionalization strategies on CO2 reduction and ultrafast spectroscopy is used to reveal the underlying photoexcited charge dynamics. We find that the positively-charged quantum dots can support sub-picosecond electron transfer to the carboxylate-based molecular catalyst and also produce >30% selectivity for CO and >170 mmolCO gZnSe-1. However, aggregation reduces activity in approximately one day. In contrast, the negatively-charged quantum dots exhibit >10 ps electron transfer and substantially lower CO selectivity, but they are colloidally stable for days. These results highlight the importance of the quantum dot-catalyst interaction for CO2 reduction. Furthermore, multi-dentate catalyst molecules create a trade-off between photocatalytic efficiency from strong interactions and deleterious aggregation of quantum dot-catalyst assemblies.

3.
RSC Adv ; 11(57): 35887-35892, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-35492800

RESUMO

Computational models have been developed that can accurately predict the electronic structure and thus optical properties of a variety of quantum dot (QD) materials. However, the application of these models to core/shell and other heterostructured QDs has received less experimental corroboration owing to the difficulty in systematically synthesizing and characterizing large ranges of geometries. In the current work, we synthesized a library of core/shell CdSe/CdS QDs with varying core sizes and shell thicknesses, and have characterized their radiative recombination rates. We find that the core size has only a modest effect on the radiative recombination rates, far less than is predicted by conventional effective mass models. In order to theoretically describe the experimental data, we performed an empirical modification of an effective mass model. We find that the conduction band offset between CdSe and CdS must be empirically altered based on QD core size in order to match our experimental data. This is hypothesized to be a result of reduced interfacial strain in core/shell QDs with smaller cores. The resultant relationship between conduction band offset and core size is used to create a predictive map of radiative lifetime as a function of core size and shell thickness. This map will be useful to researchers implementing CdSe/CdS core/shell QDs for a variety of applications since it can provide geometry specific excited state lifetimes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA