RESUMO
Echinacea purpurea (L.) Moench (EP), a medicinal plant native to North America, is now cultivated in various regions including Europe. With increasing popularity of Echinacea in Korea recently, a human clinical trial was conducted to evaluate immune-enhancing efficacy and safety of EP 60% ethanolic extract (EPE) in Koreans. Eighty volunteers were recruited for this randomized, double-blind, placebo-controlled clinical trial. They were randomly divided into two groups and given either a daily dose of 200 mg of EPE or a placebo. All participants underwent testing for Natural Killer (NK) cell cytotoxic activity, serum cytokine levels (IL-2, IL-6, IL-10, IL-12, IFN-γ, TNF-α), Wisconsin Upper Respiratory Symptom Survey-21 (WURSS-21), and Multidimensional Fatigue Scale (MFS) during this study to assess changes in outcomes. After 8 weeks of EPE consumption, a significant increase in NK cell cytotoxic activity compared to the placebo was observed. Additionally, serum cytokine levels of IL-2, IFN-γ, and TNF-α also significantly increased following EPE consumption. However, no significant changes were observed in WURSS-21 and MFS before and after EPE consumption. Throughout the 8-week study period, no adverse reactions were reported in relation to EPE consumption, and there were no clinically significant changes in diagnostic laboratory tests or vital signs in the EPE group. These results indicate that consumption of EPE could lead to immune improvement without any adverse effects. This clinical trial was the first to demonstrate beneficial effects of EPE consumption on immunity in Korean adults.
Assuntos
Citocinas , Echinacea , Células Matadoras Naturais , Extratos Vegetais , Humanos , Método Duplo-Cego , Echinacea/química , Masculino , Extratos Vegetais/farmacologia , Adulto , Feminino , Células Matadoras Naturais/efeitos dos fármacos , Citocinas/sangue , Pessoa de Meia-Idade , República da Coreia , Etanol/química , Adulto JovemRESUMO
Periodontitis, a disease caused by inflammation of oral bacteria, contributes to the loss of alveolar bone and destruction of connective tissues. Porphyromonas gingivalis, a Gram-negative bacterium, is known to possess important pathogenic factors for periodontal disease. In this study, we investigated the anti-periodontitis effects of Magnolia kobus extract (MKE) and magnolin as a component of Magnolia kobus (MK) in murine macrophage RAW 264.7 cells stimulated with Porphyromonas gingivalis lipopolysaccharide (LPS). Effects of MKE and magnolin on the mechanism of RAW 264.7 cellular inflammation were determined by analyzing nitric oxide (NO) production and Western blot protein expression (n = 3). MKE/magnolin inhibited NO production without affecting cell survival. MKE/magnolin treatment inhibited LPS-induced pro-inflammatory cytokines, expression levels of matrix metalloproteinases (MMPs such as MMP-1, 3, 8, 9, and 13), and protein levels of inflammatory mediators (such as TNF-α, IL-1ß, and mPGES-1). MKE/magnolin also suppressed NF-κB activation by inhibiting the TLR4 signaling pathway. These findings suggest that MKE has a therapeutic effect on inflammatory periodontal disease caused by oral bacterium P. gingivalis and that magnolin is a major functional component in the anti-inflammatory effect of MKE.
RESUMO
Alzheimer's disease (AD) is a worldwide problem. Currently, there are no effective drugs for AD treatment. Scrophularia buergeriana Miquel (SB) is a traditional herbal medicine used in Korea to treat various diseases. Our previous studies have shown that ethanol extract of SB roots (SBE, Brainon®) exhibits potent anti-amnesic effects in Aß1-42- or scopolamine-treated memory impairment mice model and neuroprotective effects in a glutamate-induced SH-SY5Y cell model. In this study, we evaluated the therapeutic effects of Brainon® and its mechanism of action in senescence-accelerated mouse prone 8 (SAMP8) mice. Brainon® (30 or 100 mg/kg/day) was orally treated to six-month-old SAMP8 mice for 12 weeks. Results revealed that Brainon® administration effectually ameliorated cognitive deficits in Y-maze and passive avoidance tests. Following the completion of behavioral testing, western blotting was performed using the cerebral cortex. Results revealed that Brainon® suppressed Aß1-42 accumulation, Tau hyperphosphorylation, oxidative stress, and inflammation and alleviated apoptosis in SAMP8 mice. Brainon® also promoted synaptic function by downregulating the expression of AChE and upregulating the expression of p-CREB/CREB and BDNF. Furthermore, Brainon® restored SAMP8-reduced expression of ChAT and -dephosphorylated of ERK and also decreased AChE expression in the hippocampus. Furthermore, Brainon® alleviated AD progression by promoting mitophagy/autophagy to maintain normal cellular function as a novel finding of this study. Our data suggest that Brainon® can remarkably improve cognitive deficiency with the potential to be utilized in functional food for improving brain health.
RESUMO
Clinical prevention is of utmost importance for the management of periodontal diseases. Periodontal disease starts with an inflammatory response in the gingival tissue, and results in alveolar bone destruction and subsequent tooth loss. This study aimed to confirm the anti-periodontitis effects of MKE. To confirm this, we studied its mechanism of action using qPCR and WB in LPS-treated HGF-1 cells and RANKL-induced osteoclasts. We found that MKE suppressed proinflammatory cytokine protein expression by inhibiting the TLR4/NF-κB pathway in LPS-PG-induced HGF-1 cells and blocking ECM degradation by regulating the expression of TIMPs and MMPs. We also confirmed that TRAP activity and multinucleated cell formation were reduced in RANKL-stimulated osteoclasts after exposure to MKE. These results were confirmed by inhibiting TRAF6/MAPK expression, which led to the suppression of NFATc1, CTSK, TRAP, and MMP expression at the gene and protein levels. Our results confirmed that MKE is a promising candidate for the management of periodontal disease based on its anti-inflammatory effects and inhibition of ECM degradation and osteoclastogenesis.
RESUMO
Dyglomera® is an aqueous ethanol extract of the fruit pods of Dichrostachys glomerata, a Cameroonian spice. Several studies have shown its anti-diabetic and anti-obesity effects. However, the underlying mechanisms for such effects remain unclear. Thus, the objective of this study was to investigate the anti-obesity effect of Dyglomera® and its underlying mechanisms in mice with high-fat diet-induced obesity and 3T3-L1 adipocytes. Our results revealed that Dyglomera® inhibited adipogenesis and lipogenesis by regulating AMPK phosphorylation in white adipose tissues (WATs) and 3T3-L1 adipocytes and promoted lipolysis by increasing the expression of lipolysis-related proteins. These results suggest that Dyglomera® can be used as an effective dietary supplement for treating obesity due to its modulating effect on adipogenesis/lipogenesis and lipolysis.
Assuntos
Proteínas Quinases Ativadas por AMP , Dieta Hiperlipídica , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos , Animais , Dieta Hiperlipídica/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo , Transdução de SinaisRESUMO
Since the potential of (3:1) mixtures of Atractylodes macrocephala and Amomum villosum extracts has been proposed in the management of obesity, the purpose of present study was to investigate the effects of AME:AVE (3:1) mixture on weight loss, obesity-related biochemical parameters, adipogenesis and lipogenesis related proteins in 3T3-L1 cells and HFD-induced obesity in a mouse model. Treatment with AME:AVE (3:1) mixture inhibited lipid accumulation. Furthermore, the treatment with 75 and 150 mg/kg of AME:AVE (3:1) significantly decreased the body weight gain, white adipose tissue (WAT) weight, and plasma glucose level in HFD-induced obese mice. Moreover, treatment with 75 and 150 mg/kg AME:AVE (3:1) also significantly lowered the size of adipocytes in adipose tissue and reduced the lipid accumulation in liver. AME:AVE (3:1) treatment significantly decreased the expression of proteins related to adipogenesis and lipogenesis in 3T3-L1 adipocytes and WAT of HFD-induced obese mice. These results suggest that the AME:AVE herbal mixture (3:1) has anti-obesity effects, which may be elicited by regulating the expression of adipogenesis and lipogenesis-related proteins in adipocytes and WAT in HFD-induced obesity in mice.
Assuntos
Adipócitos/efeitos dos fármacos , Amomum , Fármacos Antiobesidade/uso terapêutico , Atractylodes , Obesidade/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Células 3T3-L1 , Amomum/química , Animais , Fármacos Antiobesidade/química , Fármacos Antiobesidade/farmacologia , Atractylodes/química , Dieta Hiperlipídica/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Extratos Vegetais/química , Extratos Vegetais/farmacologiaRESUMO
Scrophulariae Radix (SR) has an important role as a medicinal plant, the roots of which are recorded used to cure fever, swelling, constipation, pharyngitis, laryngitis, neuritis, sore throat, rheumatism, and arthritis in Asia for more than two thousand years. In this paper, the studies published on Scrophularia buergeriana (SB) and Scrophularia ningpoensis (SN) in the latest 20 years were reviewed, and the biological activities of SB and SN were evaluated based on in vitro and in vivo studies. SB presented anti-inflammatory activities, immune-enhancing effects, bone disorder prevention activity, neuroprotective effect, anti-amnesic effect, and anti-allergic effect; SN showed a neuroprotective effect, anti-apoptotic effect, anti-amnesic effect, and anti-depressant effect; and SR exhibited an immune-enhancing effect and cardioprotective effects through in vitro and in vivo experiments. SB and SN are both known to exert neuroprotective and anti-amensice effects. This review investigated their applicability in the nutraceutical, functional foods, and pharmaceutical industries. Further studies, such as toxicological studies and clinical trials, on the efficacy and safety of SR, including SB and SN, need to be conducted.
Assuntos
Raízes de Plantas/química , Scrophularia/química , Medicamentos de Ervas Chinesas/químicaRESUMO
The aim of this study was to determine the anti-osteoarthritic effects of LI73014F2, which consists of Terminalia chebula fruit, Curcuma longa rhizome, and Boswellia serrata gum resin in a 2:1:2 ratio, in the monosodium iodoacetate (MIA)-induced osteoarthritis (OA) rat model. LI73014F2 was orally administered once per day for three weeks. Weight-bearing distribution and arthritis index (AI) were measured once per week to confirm the OA symptoms. Synovial membrane, proteoglycan layer, and cartilage damage were investigated by histological examination, while synovial fluid interleukin-1ß level was analyzed using a commercial kit. Levels of pro-inflammatory mediators/cytokines and matrix metalloproteinases (MMPs) in the cartilage tissues were investigated to confirm the anti-osteoarthritic effects of LI73014F2. LI73014F2 significantly inhibited the MIA-induced increase in OA symptoms, synovial fluid cytokine, cartilage damage, and expression levels of pro-inflammatory mediators/cytokines and MMPs in the articular cartilage. These results suggest that LI73014F2 exerts anti-osteoarthritic effects by regulating inflammatory cytokines and MMPs in MIA-induced OA rats.
Assuntos
Anti-Inflamatórios/farmacologia , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Ácido Iodoacético/efeitos adversos , Osteoartrite/etiologia , Osteoartrite/patologia , Extratos Vegetais/farmacologia , Animais , Biomarcadores , Citocinas/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Imuno-Histoquímica , Mediadores da Inflamação/metabolismo , Masculino , Metaloproteinases da Matriz/metabolismo , Osteoartrite/tratamento farmacológico , Ratos , Líquido Sinovial/metabolismoRESUMO
Osteoarthritis (OA) is one of the most well-characterized joint diseases and is associated with chondrocyte inflammation, metalloproteinase upregulation and apoptosis. LI73014F2 is a novel composition prepared from aqueous extract of Terminalia chebula fruit, alcohol extract of Curcuma longa rhizome, and Boswellia serrata extract at 2:1:2 ratio. Earlier studies have shown that LI73014F2 inhibits cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX) activities, and attenuates clinical symptoms in OA subjects. In the present study, we evaluated the protective anti-inflammatory and anti-apoptotic effects, as well as the underlying mechanisms, of LI73014F2 in interleukin (IL)-1ß-induced inflammation in human primary chondrocytes. Human chondrocytes were treated with LI73014F2 (0, 12.5, 25 and 50 µg/mL) in IL-1ß (10 ng/mL)-containing chondrocyte growth medium for 24 h. Cell viability was assessed using an MTT assay. The pro-inflammatory mediator, inflammatory cytokines, MMPs, apoptosis-related proteins, mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways protein expression levels were detected by western blot analysis. The results demonstrated that LI73014F2 normalized the expressions of COX-2, mPGES-1, PGE2, 5-LOX, LTB4, IL-1ß, TNFα, IL-6, MMP-2, MMP-3, MMP-9, MMP-13, Bax/Bcl-2, cleaved caspase-9 and -3, cleaved PARP, phospho-NF-κB p65 and phospho-p38 MAPK proteins in IL-1ß-induced primary human chondrocytes. Moreover, the data suggested that LI73014F2 reduced IL-1ß-induced inflammation and apoptosis, at least partially via the inhibition of the NF-κB/MAPK signaling pathway. In conclusion, the present findings provide the molecular basis of the anti-OA efficacy of LI73014F2.
Assuntos
Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Interleucina-1beta/farmacologia , Osteoartrite/tratamento farmacológico , Extratos Vegetais/farmacologia , Araquidonato 5-Lipoxigenase/metabolismo , Boswellia/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Curcuma/química , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Citocinas/metabolismo , Humanos , Inflamação/tratamento farmacológico , Interleucina-1beta/metabolismo , Leucotrieno B4/metabolismo , Inibidores de Lipoxigenase/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metaloproteases/metabolismo , NF-kappa B/metabolismo , Prostaglandina-E Sintases/metabolismo , Receptores de Prostaglandina E/metabolismo , Rizoma/química , Terminalia/químicaRESUMO
Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid accumulation, which is the most common form of chronic liver disease. Multiple clinical studies using natural compounds such as flavonoids have been conducted to treat NAFLD. In the present study, the pharmacological effect of Citrus aurantium L. (Rutaceae) peel extract (CAE), which contains over 27% of polymethoxyflavone nobiletin, on NAFLD was evaluated using a high-fat diet (HFD) animal model susceptible to developing NAFLD. C57BL/6 mice were fed an HFD (60% kcal of energy derived from fat) for 8 weeks to induce obesity. Obese mice were randomly allocated to four groups of eight mice each (HFD alone, HFD with silymarin, HFD with 50 mg/kg CAE, and HFD with 100 mg/kg CAE). After 8 weeks of treatment, all mice were euthanized, and plasma and liver tissues were analyzed biochemically and histopathologically. The results indicate that CAE treatment significantly reduced HFD-induced NAFLD, as shown by decreased serum lipid index and prevented liver histopathology. The expression of genes involved in lipid synthesis including free fatty acid (FFA), peroxisome-proliferator-activated receptor γ (PPAR-γ), sterol receptor element binding protein 1c (SREBP-1c), and fatty acid synthesis enzyme was suppressed by CAE treatment. Moreover, compared to untreated mice, CAE-treated HFD mice showed decreased pro-inflammatory cytokine expression. These results demonstrated that CAE prevented HFD-induced NAFLD by reducing plasma levels of triglyceride and cholesterol and de novo lipid synthesis.
Assuntos
Citrus/química , Flavonoides/farmacologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Quinases Proteína-Quinases Ativadas por AMP , Animais , Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , PPAR gama/biossíntese , PPAR gama/genética , Extratos Vegetais/farmacologia , Proteínas Quinases/metabolismo , Distribuição Aleatória , Silimarina/farmacologia , Proteína de Ligação a Elemento Regulador de Esterol 1/biossíntese , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Receptor fas/metabolismoRESUMO
Nobiletin and tangeretin are polymethoxy flavonoids (PMFs), found in rich quantities in the peel of citrus fruits. In the present study, we assessed the biological effect of the PMFs on liver damage using a mouse model of binge drinking. First, we extracted PMFs from the peels of Citrus aurantium to make Citrus aurantium extract (CAE). Male C57BL/6 mice were orally treated with silymarin and CAE (50, 100, and 200 mg/kg) for 3 days prior to ethanol (5 g/kg, total of 3 doses) oral gavage. Liver injury was observed in the ethanol alone group, as evidenced by increases in serum hepatic enzymes and histopathologic alteration, as well as by hepatic oxidative status disruption. CAE improved serum marker and hepatic structure and restored oxidative status by enhancing antioxidant enzyme levels and by reducing lipid peroxidation levels. In addition, CAE evidently suppressed inflammation and apoptosis in the livers of mice administered with ethanol, by 85% (tumor necrosis factor-α) and 44% compared to the control group, respectively. Furthermore, CAE activated lipid metabolism related signals and enhanced phosphorylation of AMP-activated protein kinase (AMPK) and nuclear factor E2-related factor 2 (Nrf2) with several cytoprotective proteins including heme oxygenase-1, NAD(P)H quinone oxidoreductase 1, and γ-glutamylcysteine synthetase. Taken together, the present study demonstrated that, CAE possesses antioxidant, anti-inflammatory, and antiapoptotic activity against ethanol-induced liver injury.
Assuntos
Proteínas Quinases Ativadas por AMP , Citrus , Extratos Vegetais , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Consumo Excessivo de Bebidas Alcoólicas , Citrus/química , Modelos Animais de Doenças , Etanol/farmacologia , Flavonas , Flavonoides/farmacologia , Heme Oxigenase-1/metabolismo , Inflamação/tratamento farmacológico , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Extratos Vegetais/farmacologia , Silimarina/farmacologia , Fator de Necrose Tumoral alfaRESUMO
Among the most frequent causes of respiratory infections in humans are influenza A virus H1N1 (H1N1), influenza B virus (IVB), and respiratory syncytial virus (RSV). Echinacea is a perennial wildflower belonging to the Asteraceae family. Echinacea purpurea (L.) Moench is a species belonging to the Echinacea genus. Its characteristic compound, chicoric acid (CA), is known for its physiological activities, including antiviral effects and immune enhancement. Activities of E. purpurea 60% ethanol extract (EPE) and CA in inhibiting infections caused by H1N1, IVB, and RSV subtype A (RSV-A) were evaluated through plaque inhibition tests, quantification of viral gene expression, and analysis of transmission electron microscopy (TEM) images. Additionally, inhibitory activities of EPE and CA for hemagglutination and neuraminidase (NA) of H1N1 and IVB were determined. In the plaque reduction assays, both EPE and CA reduced infectivity against H1N1, IVB, and RSV-A. Furthermore, quantitative real-time polymerase chain reaction analysis revealed that EPE and CA reduced gene expression levels for H1N1, IVB, and RSV-A, whereas TEM image analysis confirmed their inhibitory effects on host cell infection by these viruses. Hemagglutination assays exhibited the ability of EPE and CA to hinder H1N1 and IVB attachment to host cell receptors. Furthermore, EPE and CA displayed inhibition activity against the NA of H1N1 and IVB. These findings suggest that EPE and CA can suppress the infection and propagation of H1N1, IVB, and RSV-A, demonstrating their potential as preventive and therapeutic agents for viral respiratory infections or as ingredients for health functional foods.
RESUMO
Population aging around the world is rapidly progressing; as a result, cognitive decline developing into dementia is becoming a social problem. There is no drug that can cure dementia, and though drugs that alleviate the symptoms of dementia have been developed, they also have side effects. Therefore, we conducted a study on improving cognitive function using natural products that have secured safety. We confirmed the effect of an extract of Scrophularia buergeriana on scopolamine-induced cognitive impairment through mouse behavioral experiments, and we observed metabolic changes in the cortex and hippocampus via brain tissue dissection after the behavioral experiment. Mitigating effects of S. buergeriana on cognitive impairment caused by scopolamine were observed in passive avoidance and Morris water maze tests. A metabolic analysis revealed biomarkers related to the alleviating effect of cognitive impairment. Niacinamide, tyrosine, uridine, and valine in the cortex and GABA, choline, creatine, formate, fumarate, hypoxanthine, leucine, myo-inositol, pyroglutamate, and taurine in the hippocampus were identified as biomarker candidates for recovering cognitive impairment. In addition to behavioral experiments, this metabolomics study using specific regions of the brain may be helpful in understanding the effects of cognitive improvement.
Assuntos
Cognição , Disfunção Cognitiva , Hipocampo , Metabolômica , Extratos Vegetais , Scrophularia , Animais , Metabolômica/métodos , Camundongos , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Scrophularia/química , Scrophularia/metabolismo , Masculino , Extratos Vegetais/farmacologia , Cognição/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Escopolamina , Biomarcadores , Comportamento Animal/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Modelos Animais de Doenças , Metaboloma/efeitos dos fármacosRESUMO
Introduction: Cissus quadrangularis is a vining plant widely used as a traditional herbal remedy for various ailments. In this study, the therapeutic effects of C. quadrangularis extract (CQR-300) on type 2 diabetes mellitus (T2DM) were investigated in a leptin receptor-mutated db/db mouse model. Methods: CQR-300 was orally administered to db/db mice (n = 6/group) at different doses (50, 100, and 200 mg/kg) for 8 weeks. Blood glucose levels and oral glucose tolerance were assessed using the AccuCheck glucometer. Enzyme-linked immunosorbent assay was performed to evaluate insulin and hemoglobin A1c (HbA1c) levels in the blood of db/db mice. Liver and pancreatic tissues from db/db mice were examined by hematoxylin and eosin (H&E) and immunohistochemical staining. The protein levels of gluconeogenesis-, lipogenesis-, and oxidative stress-related factors were evaluated using western blotting. Results and discussion: CQR-300 treatment effectively reduced body weight, blood glucose, and insulin levels. HbA1c levels were increased by leptin receptor mutation. Additionally, in the oral glucose tolerance tests, the CQR-300 treated group had a faster blood glucose recovery rate than the db/db group. H&E and Oil red-O staining of the liver showed decreased lipid accumulation in the CQR-300 treated group than the db/db group. Western blot analysis confirmed that CQR-300 effectively inhibited gluconeogenesis, lipogenesis, and oxidative stress-related factors. Our findings suggest that CQR-300 has the potential to be used as a T2DM supplement.
RESUMO
Microglia-induced neuroinflammation is one of the causative factors in cognitive dysfunction and neurodegenerative disorders. Our previous studies have revealed several benefits of Scrophularia buergeriana extract (Brainon®) in the central nervous system, but the underlying mechanism of action has not been elucidated. This study is purposed to investigate the anti-inflammatory and neuroprotective mechanisms of Brainon in the BV-2 condition SH-SY5Y model. Lipopolysaccharide (LPS)-induced BV-2 conditioned media (CM) were used to treat SH-SY5Y cells to investigate neuroprotective effects of the extract against microglial cytotoxicity. Results demonstrated that pretreated Brainon decreased nitric oxide release, the inducible nitric oxide synthase expression level, and expression of cytokines like interleukin-6, interleukin-1ß, and tumor necrosis factor-α by blocking expression of TLR4/MyD88 and NLRP3 and suppressing nuclear factor κB/AP-1 and p38/JNK signaling pathways in LPS-induced BV-2 cells. In addition, when SH-SY5Y cells were treated with CM, pretreatment with Brainon increased neuronal viability by upregulating expression of antioxidant proteins like as SODs and Gpx-1. Increased autophagy and mitophagy-associated proteins also provide important clues for SH-SY5Y to prevent apoptosis by Brainon. Brainon also modulated mTOR/AMPK signaling to clear misfolded proteins or damaged mitochondria via auto/mitophagy to protect SH-SY5Y cells from CM. Taken together, these results indicate that Brainon could reduce inflammatory mediators secreted from BV-2 cells and prevent apoptosis by increasing antioxidant and auto/mitophagy mechanisms by regulating mTOR/AMPK signaling in SH-SY5Y cells. Therefore, Brainon has the potential to be developed as a natural product in a brain health functional food to inhibit cognitive decline and neuronal death.
Assuntos
Neuroblastoma , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Scrophularia , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Lipopolissacarídeos/efeitos adversos , Microglia , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Doenças Neuroinflamatórias , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , NF-kappa B/metabolismo , Scrophularia/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Doenças Neurodegenerativas/tratamento farmacológicoRESUMO
Spiraea prunifolia has been used in Korean traditional medicine to treat malaria, fever, and emetic conditions. Previous investigation reported that several parts of Spiraea prunifolia show various functional effects. However, the effect of Spiraea prunifolia leaves extract (SPE) on anti-obesity remains unclear. Therefore, we used a high-fat diet (HFD)-induced obese mouse model in this study to investigate the effects of SPE on adipogenesis, lipogenesis, and ß-oxidation. Oral administration of SPE in HFD-induced obese mice considerably reduced body weight, serum levels such as total cholesterol, triglyceride, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol, adipose tissue weight, and adipocyte cell size. Moreover, SPE significantly decreased protein expression levels of adipogenesis and lipogenesis related genes such as CCAAT/enhancer binding protein α, peroxisome proliferator-activated receptor γ, adipocyte protein 2, acetyl-CoA carboxylase, and fatty acid synthase in epididymal adipose tissues. SPE treatment induced the protein expression of carnitine palmitoyl transferase-1, which might have promoted phosphorylated AMP-activated protein kinase-medicated ß-oxidation. The present study reveals an anti-adipogenic, anti-lipogenic, ß-oxidation effects of SPE in vivo and represents AMP-activated protein kinase signaling as targets for SPE.
Assuntos
Fármacos Antiobesidade , Spiraea , Proteínas Quinases Ativadas por AMP/metabolismo , Adipogenia , Animais , Fármacos Antiobesidade/farmacologia , Colesterol , Dieta Hiperlipídica/efeitos adversos , Lipogênese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Folhas de Planta , Spiraea/metabolismoRESUMO
Over the past decades, periodontitis has become a rising health problem and caused various diseases. In the many studies shows that some extracts and compound to the prevention and treatment of periodontitis. This study focuses on the effects of inhibition of gingival damage and alveolar bone loss. The aim of this study was to evaluate the protective effects of Magnolia biondii extract (MBE) against ligature-induced periodontitis in rats. A ligature was placed around the molar teeth for 8 weeks, and MBE was administered for 8 weeks. Gingival tissue damage and alveolar bone loss were measured by microcomputed tomography (CT) analysis and histopathological examination. Serum Interluekin-1 ß (IL-1ß), tumor necrosis factor-α (TNF-α), cyclooxygenases-2 (COX-2), and receptor activator of nuclear factor-κB ligand (RANKL) levels were investigated using commercial kits to confirm the antiperiodontitis effects of MBE. We confirmed that ligature-induced periodontitis resulted in gingival tissue damage and alveolar bone loss. However, treatment for 8 weeks with MBE protected from periodontal tissue damage and downregulated serum inflammatory cytokine factors and RANKL levels. These results suggest that MBE exerts antiperiodontitis effects by inhibiting gingival tissue destruction and alveolar bone loss through regulation of anti-inflammatory cytokines in periodontitis-induced rats.
Assuntos
Anti-Inflamatórios/uso terapêutico , Magnolia/química , Periodontite/tratamento farmacológico , Periodontite/etiologia , Extratos Vegetais/uso terapêutico , Animais , Anti-Inflamatórios/química , Masculino , Extratos Vegetais/química , Ratos , Microtomografia por Raio-XRESUMO
The aim of the present study was to evaluate the neuroprotective effect of Citrus aurantium extract (CAE) and nobiletin against amyloid ß 142 (Aß 142)induced spatial learning and memory impairment in mice. After injecting Aß 142 (5 µl/2.5 min, intracerebroventricular injection), amnesic mice were orally administered CAE and nobiletin for 28 days. Memory, spatial and cognitive ability were measured using passive avoidance and a Morris water maze task. Acetylcholinesterase (AchE) activity was investigated in the hippocampus and cortex using commercial kits and the analysis of Bax, Bcl2, and cleaved caspase3 protein expression by western blot assays was used to confirm the antiapoptotic mechanism of CAE and nobiletin. The present study confirmed impairments in learning and memory in the Aßinduced neurodegenerative mice with increased AchE activity in the brain. However, the daily administration of CAE and nobiletin reduced the spatial learning deficits and increased the AchE activity in the cortex and hippocampus. Furthermore, CAE and nobiletin significantly downregulated the Bax and cleaved caspase3 protein expression and upregulated the Bcl2 and Bcl2/Bax expression in the cortex and hippocampus of Aßtreated mice. These results suggest that CAE and nobiletin exert a neuroprotective effect by regulating antiapoptotic mechanisms, including reduced AchE activity in the cortex and hippocampus of the cognitive deficit mouse model.
Assuntos
Peptídeos beta-Amiloides/metabolismo , Citrus/química , Flavonas/farmacologia , Transtornos da Memória/tratamento farmacológico , Fragmentos de Peptídeos/metabolismo , Extratos Vegetais/farmacologia , Animais , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/fisiopatologia , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Camundongos , Extratos Vegetais/químicaRESUMO
The objective of this study was to evaluate the anti-obesity activity and the action mechanism of Cissus quadrangularis extracts (CQR-300) in 3T3-L1 adipocytes. Cissus quadrangularis was extracted with hot water, resulting in CQR-300. The anti-obesity activity of CQR-300 in 3T3-L1 adipocytes was examined by Oil-red O staining. Possible mechanisms of CQR-300 in 3T3-L1 adipocytes were determined by real-time PCR and western blot. Treatment with CQR-300 inhibited lipid accumulation without showing cytotoxicity to 3T3-L1 adipocytes. Furthermore, CQR-300 decreased adipogenesis/lipogenesis-related mRNA expression levels of fatty acid binding protein (aP2), fatty acid synthase (FAS), lipoprotein lipase (LPL), stearoyl-CoA desaturase-1 (SCD-1), and acetyl-CoA carboxylase (ACC). CQR-300 also down-regulated expression levels of adipogenesis/lipogenesis-associated proteins, including peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), sterol regulatory element binding protein-1c (SREBP-1c), and FAS. It's also up-regulated the expression level of phosphorylated-AMPK (p-AMPK). Collectively, these results suggested that CQR-300 might have an anti-obesity effect by its ability to decrease expression levels of adipogenesis/lipogenesis-related genes and proteins.
RESUMO
OBJECTIVE: To evaluate the possible protective effect of Citrus aurantium peel extract (CAE) against apoptosis in cholestatic liver fibrosis induced by bile duct ligation in mice. METHODS: Male ICR mice were divided to 5 groups: 1) Control group (Sham-operated mice), 2) Cholestatic liver injury group induced by bile duct ligation (BDL), 3) BDL mice treated with silymarin (200 mg/kg) for 4 weeks, 4) BDL mice treated with 50 mg/kg CAE for 4 weeks, 5) BDL mice treated with 200 mg/kg CAE for 4 weeks. Mice were sacrificed and liver fibrosis was evaluated by serum and hepatic tissue biochemistry tests and liver histopathological examination. Effects of CAE on inflammation and apoptosis gene regulation were investigated through real-time PCR. CAE effect on lipid metabolism related signaling was determined by western blot analysis. RESULTS: In BDL mice, administration of CAE for 4 weeks markedly attenuated liver fibrosis based on histopathological alteration. Serum and hepatic tissue biochemistry results revealed that CAE (50 and 200 mg/kg) decreased the levels of alanine transaminase, aspartate transaminase, gamma-glutamyl transferase, total bilirubin, nitric oxide, and thiobarbituric acid reactive substances. Real-time PCR and western blot analysis showed that CAE regulated inflammation, apoptosis, and lipid metabolism factors increased by BDL. Interleukin family, tumor necrosis factor α, and related apoptosis factors mRNA levels were increased by BDL treatment. However, these increases were suppressed by CAE administration. In addition, CAE effectively increased phosphorylation of AMP-activated protein kinase, nuclear factor E2-related factor 2, and related cytoprotective proteins. CONCLUSIONS: CAE can efficiently regulate BDL-induced liver injury with antioxidant, anti-inflammatory, and anti-apoptotic activities.