Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Rev Neurosci ; 25(8): 553-572, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38898231

RESUMO

Gene therapy is emerging as a powerful tool to modulate abnormal gene expression, a hallmark of most CNS disorders. The transformative potentials of recently approved gene therapies for the treatment of spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS) and active cerebral adrenoleukodystrophy are encouraging further development of this approach. However, most attempts to translate gene therapy to the clinic have failed to make it to market. There is an urgent need not only to tailor the genes that are targeted to the pathology of interest but to also address delivery challenges and thereby maximize the utility of genetic tools. In this Review, we provide an overview of gene therapy modalities for CNS diseases, emphasizing the interconnectedness of different delivery strategies and routes of administration. Important gaps in understanding that could accelerate the clinical translatability of CNS genetic interventions are addressed, and we present lessons learned from failed clinical trials that may guide the future development of gene therapies for the treatment and management of CNS disorders.


Assuntos
Doenças do Sistema Nervoso Central , Terapia Genética , Humanos , Terapia Genética/métodos , Terapia Genética/tendências , Doenças do Sistema Nervoso Central/terapia , Doenças do Sistema Nervoso Central/genética , Animais , Pesquisa Translacional Biomédica/métodos , Técnicas de Transferência de Genes/tendências
2.
Expert Opin Drug Deliv ; 21(1): 111-129, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38235592

RESUMO

INTRODUCTION: Intravesical drug delivery (IDD) has gained recognition as a viable approach for treating bladder-related diseases over the years. However, it comes with its set of challenges, including voiding difficulties and limitations in mucosal and epithelial penetration. These challenges lead to drug dilution and clearance, resulting in poor efficacy. Various strategies for drug delivery have been devised to overcome these issues, all aimed at optimizing drug delivery. Nevertheless, there has been minimal translation to clinical settings. AREAS COVERED: This review provides a detailed description of IDD, including its history, advantages, and challenges. It also explores the physical barriers encountered in IDD, such as voiding, mucosal penetration, and epithelial penetration, and discusses current strategies for overcoming these challenges. Additionally, it offers a comprehensive roadmap for advancing IDD into clinical trials. EXPERT OPINION: Physical bladder barriers and limitations of conventional treatments result in unsatisfactory efficacy against bladder diseases. Nevertheless, substantial recent efforts in this field have led to significant progress in overcoming these challenges and have raised important attributes for an optimal IDD system. However, there is still a lack of well-defined steps in the workflow to optimize the IDD system for clinical settings, and further research is required to establish more comprehensive in vitro and in vivo models to expedite clinical translation.


Assuntos
Sistemas de Liberação de Medicamentos , Bexiga Urinária , Administração Intravesical , Preparações Farmacêuticas
3.
Nat Commun ; 15(1): 2108, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453923

RESUMO

The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has evoked a worldwide pandemic. As the emergence of variants has hampered the neutralization capacity of currently available vaccines, developing effective antiviral therapeutics against SARS-CoV-2 and its variants becomes a significant challenge. The main protease (Mpro) of SARS-CoV-2 has received increased attention as an attractive pharmaceutical target because of its pivotal role in viral replication and proliferation. Here, we generated a de novo Mpro-inhibitor screening platform to evaluate the efficacies of Mpro inhibitors based on Mpro cleavage site-embedded amyloid peptide (MCAP)-coated gold nanoparticles (MCAP-AuNPs). We fabricated MCAPs comprising an amyloid-forming sequence and Mpro-cleavage sequence, mimicking in vivo viral replication process mediated by Mpro. By measuring the proteolytic activity of Mpro and the inhibitory efficacies of various drugs, we confirmed that the MCAP-AuNP-based platform was suitable for rapid screening potential of Mpro inhibitors. These results demonstrated that our MCAP-AuNP-based platform has great potential for discovering Mpro inhibitors and may accelerate the development of therapeutics against COVID-19.


Assuntos
COVID-19 , Nanopartículas Metálicas , Humanos , SARS-CoV-2 , Ouro/farmacologia , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais , Peptídeos , Peptídeo Hidrolases , Antivirais/farmacologia , Simulação de Acoplamento Molecular
4.
Adv Mater ; : e2406179, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39003621

RESUMO

Hydroxyapatite (HA) exhibits outstanding biocompatibility, bioactivity, osteoconductivity, and natural anti-inflammatory properties. Pure HA, ion-doped HA, and HA-polymer composites are investigated, but critical limitations such as brittleness remain; numerous efforts are being made to address them. Herein, the novel self-crystallization of a polymeric single-stranded deoxyribonucleic acid (ssDNA) without additional phosphate ions for synthesizing deoxyribonucleic apatite (DNApatite) is presented. The synthesized DNApatite, DNA1Ca2.2(PO4)1.3OH2.1, has a repetitive dual phase of inorganic HA crystals and amorphous organic ssDNA at the sub-nm scale, forming nanorods. Its mechanical properties, including toughness and elasticity, are significantly enhanced compared with those of HA nanorod, with a Young's modulus similar to that of natural bone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA