Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Drug Dev Res ; 84(8): 1699-1708, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37688413

RESUMO

Dengue fever is an acute febrile disease caused by dengue virus (DENV) infection. Over the past 60 years, DENV has spread throughout tropical regions and currently affects more than 50% of the world's population; however, there are as of yet no effective anti-DENV drugs for clinical treatment. A number of research teams have investigated derivatives of glycolipids as possible agents for the inhibition of DENV. Our objective in this research was to study the antiviral effects of trehalose 6-caprate (TMC), trehalose 6-monolaurate (TML), and trehalose 6-monooleate (TMO), based on reports that the corresponding glycosyl, trehalose, reduces the transmission of Zika virus (ZIKV). We also sought to elucidate the molecular mechanisms underlying inhibition using the RNA isolation and reverse transcription-quantitative polymerase chain reaction, western blot analysis, median tissue culture infectious dose (TCID50 ) assay, and immunofluorescence assay and immunochemistry staining, in vitro. This is the first study to demonstrate the TML-induced inhibition of DENV serotype 2 (DENV-2) in a dose-dependent manner. The inhibitory effects of TML in the pretreated, cotreated, and full-treated groups were confirmed using time of addition assays. We determined that TML restricted viral binding, entry, replication, and release. We also confirmed the efficacy of TML against three clinical isolates of DENV serotypes 1, 3, and 4 (DENV-1, DENV-3, and DENV-4). The findings obtained in this study identify TML as a promising candidate for the development of drugs to treat DENV infection.


Assuntos
Vírus da Dengue , Dengue , Infecção por Zika virus , Zika virus , Humanos , Vírus da Dengue/genética , Dengue/tratamento farmacológico , Dengue/epidemiologia , Zika virus/genética , Infecção por Zika virus/epidemiologia , Trealose/farmacologia , Trealose/uso terapêutico
2.
Neurochem Res ; 40(4): 800-10, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25672822

RESUMO

Spinocerebellar ataxia type 17 (SCA17) is caused by CAG/CAA repeat expansion on the gene encoding a general transcription factor, TATA-box-binding protein (TBP). The CAG repeat expansion leads to the reduced solubility of polyglutamine TBP and induces aggregate formation. The TBP aggregation, mostly present in the cell nuclei, is distinct from that in most other neurodegenerative diseases, in which the aggregation is formed in cytosol or extracellular compartments. Trehalose is a disaccharide issued by the Food and Drug Administration with a Generally Recognized As Safe status. Lines of evidence suggest trehalose could prevent protein aggregate formation in several neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease. In this study, we evaluated the therapeutic potential of trehalose on SCA17 using cerebellar primary and organotypic culture systems and a mouse model. Our results showed that TBP nuclear aggregation was significantly decreased in both the primary and slice cultures. Trehalose (4 %) was further supplied in the drinking water of SCA17 transgenic mice. We found both the gait behavior in the footprint analysis and motor coordination in the rotarod task were significantly improved in the trehalose-treated SCA17 mice. The cerebellar weight was increased and the astrocyte gliosis was reduced in SCA17 mice after trehalose treatment. These data suggest that trehalose could be a potential nontoxic treatment for SCA17.


Assuntos
Marcha Atáxica/prevenção & controle , Gliose/prevenção & controle , Ataxias Espinocerebelares/fisiopatologia , Trealose/farmacologia , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Células de Purkinje/efeitos dos fármacos
3.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 12): 3144-54, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25478833

RESUMO

Trehalose synthase catalyzes the simple conversion of the inexpensive maltose into trehalose with a side reaction of hydrolysis. Here, the crystal structures of the wild type and the N253A mutant of Deinococcus radiodurans trehalose synthase (DrTS) in complex with the inhibitor Tris are reported. DrTS consists of a catalytic (ß/α)8 barrel, subdomain B, a C-terminal ß domain and two TS-unique subdomains (S7 and S8). The C-terminal domain and S8 contribute the majority of the dimeric interface. DrTS shares high structural homology with sucrose hydrolase, amylosucrase and sucrose isomerase in complex with sucrose, in particular a virtually identical active-site architecture and a similar substrate-induced rotation of subdomain B. The inhibitor Tris was bound and mimics a sugar at the -1 subsite. A maltose was modelled into the active site, and subsequent mutational analysis suggested that Tyr213, Glu320 and Glu324 are essential within the +1 subsite for the TS activity. In addition, the interaction networks between subdomains B and S7 seal the active-site entrance. Disruption of such networks through the replacement of Arg148 and Asn253 with alanine resulted in a decrease in isomerase activity by 8-9-fold and an increased hydrolase activity by 1.5-1.8-fold. The N253A structure showed a small pore created for water entry. Therefore, our DrTS-Tris may represent a substrate-induced closed conformation that will facilitate intramolecular isomerization and minimize disaccharide hydrolysis.


Assuntos
Deinococcus/enzimologia , Glucosiltransferases/química , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Deinococcus/química , Deinococcus/genética , Deinococcus/metabolismo , Glucosiltransferases/antagonistas & inibidores , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Isomerismo , Maltose/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação Puntual , Conformação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência
4.
J Agric Food Chem ; 72(33): 18649-18657, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39109746

RESUMO

Trehalose synthase (TreS) catalyzes the reversible interconversion of maltose to trehalose, playing a vital role in trehalose production. Understanding the catalytic mechanism of TreS is crucial for optimizing the enzyme activity and enhancing its suitability for industrial applications. Here, we report the crystal structures of both the wild type and the E324D mutant of Deinococcus radiodurans trehalose synthase in complex with the trehalose analogue, validoxylamine A. By employing structure-guided mutagenesis, we identified N253, E320, and E324 as crucial residues within the +1 subsite for isomerase activity. Based on these complex structures, we propose the catalytic mechanism underlying the reversible interconversion of maltose to trehalose. These findings significantly advance our comprehension of the reaction mechanism of TreS.


Assuntos
Proteínas de Bactérias , Deinococcus , Glucosiltransferases , Maltose , Trealose , Glucosiltransferases/genética , Glucosiltransferases/química , Glucosiltransferases/metabolismo , Deinococcus/enzimologia , Deinococcus/genética , Deinococcus/química , Trealose/metabolismo , Trealose/química , Maltose/metabolismo , Maltose/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Mutação
5.
ACS Chem Neurosci ; 15(4): 724-734, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38290213

RESUMO

Herbs themselves and various herbal medicines are great resources for discovering therapeutic drugs for various diseases, including Alzheimer's disease (AD), one of the common neurodegenerative diseases. Utilizing mouse primary cortical neurons and DiBAC4(3), a voltage-sensitive indicator, we have set up a drug screening system and identified an herbal extraction compound, paeonol, obtained from Paeonia lactiflora; this compound is able to ameliorate the abnormal depolarization induced by Aß42 oligomers. Our aim was to further find effective paeonol derivatives since paeonol has been previously studied. 6'-Methyl paeonol, one of the six paeonol derivatives surveyed, is able to inhibit the abnormal depolarization induced by Aß oligomers. Furthermore, 6'-methyl paeonol is able to alleviate the NMDA- and AMPA-induced depolarization. When a molecular mechanism was investigated, 6'-methyl paeonol was found to reverse the Aß-induced increase in ERK phosphorylation. At the animal level, mice injected with 6'-methyl paeonol showed little change in their basic physical parameters compared to the control mice. 6'-Methyl paeonol was able to ameliorate the impairment of memory and learning behavior in J20 mice, an AD mouse model, as measured by the Morris water maze. Thus, paeonol derivatives could provide a structural foundation for developing and designing an effective compound with promising clinical benefits.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Neurônios , Acetofenonas/farmacologia , Acetofenonas/uso terapêutico , Modelos Animais de Doenças , Peptídeos beta-Amiloides/toxicidade , Aprendizagem em Labirinto
6.
ACS Chem Neurosci ; 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37026580

RESUMO

Ceramides, structural components of the cell, are known to play a range of roles in glucose metabolism and apoptosis. C16-ceramide, an abundant molecular species of endogenous ceramide, has not had its influence on learning and memory explored. We administered C16-ceramide to mice immediately after weaning and examined the learning and memory behavior of these mice during adulthood. Mice given C16-ceramide early in life showed improved adult learning/short-term memory behavior without affecting their glucose metabolism. Looking for a plausible mechanism for this, we found that calcium influx, CaMKII/CREB, and the Erk-relevant signaling transduction are increased after C16-ceramide stimulation in primary neurons in vitro. Possible downstream epigenetic molecular events, such as H3K4 methylation and Egr-1 abundance, were also found to be upregulated. Utilizing J20 mice, an Alzheimer disease mice model in which mice were injected after weaning with C16-ceramide, we found that these mice also show improved learning and short-term memory behavior when assessed by the Morris water maze test. Taken together, giving C16-ceramide early in life would seem to benefit learning and short-term memory behavior during adulthood.

7.
Biomol Ther (Seoul) ; 31(1): 127-138, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35790892

RESUMO

Glycogen synthase kinase-3ß (GSK-3ß) is an important serine/threonine kinase that implicates in multiple cellular processes and links with the neurodegenerative diseases including Alzheimer's disease (AD). In this study, structure-based virtual screening was performed to search database for compounds targeting GSK-3ß from Enamine's screening collection. Of the top-ranked compounds, 7 primary hits underwent a luminescent kinase assay and a cell assay using human neuroblastoma SH-SY5Y cells expressing Tau repeat domain (TauRD) with pro-aggregant mutation ΔK280. In the kinase assay for these 7 compounds, residual GSK-3ß activities ranged from 36.1% to 90.0% were detected at the IC50 of SB-216763. In the cell assay, only compounds VB-030 and VB-037 reduced Tau aggregation in SH-SY5Y cells expressing ΔK280 TauRD-DsRed folding reporter. In SH-SY5Y cells expressing ΔK280 TauRD, neither VB-030 nor VB-037 increased expression of GSK-3α Ser21 or GSK-3ß Ser9. Among extracellular signal-regulated kinase (ERK), AKT serine/threonine kinase 1 (AKT), mitogen-activated protein kinase 14 (P38) and mitogen-activated protein kinase 8 (JNK) which modulate Tau phosphorylation, VB-037 attenuated active phosphorylation of P38 Thr180/Tyr182, whereas VB-030 had no effect on the phosphorylation status of ERK, AKT, P38 or JNK. However, both VB-030 and VB-037 reduced endogenous Tau phosphorylation at Ser202, Thr231, Ser396 and Ser404 in neuronally differentiated SH-SY5Y expressing ΔK280 TauRD. In addition, VB-030 and VB-037 further improved neuronal survival and/or neurite length and branch in mouse hippocampal primary culture under Tau cytotoxicity. Overall, through inhibiting GSK-3ß kinase activity and/or p-P38 (Thr180/Tyr182), both compounds may serve as promising candidates to reduce Tau aggregation/cytotoxicity for AD treatment.

8.
Biomedicines ; 10(11)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36359294

RESUMO

(Background) The coronavirus disease 2019 (COVID-19) that is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) carries high infectivity and mortality. Efficient intervention strategies are urgently needed. Avian immunoglobulin Y (IgY) showed efficacy against viral infection whereas the in vivo efficacy remains unclear. (Methods) We immunized laying hens with S1, S1 receptor-binding domain (S1-RBD), or S2 subunits of the SARS-CoV-2 spike (S) protein. After immunization, IgYs were collected and extracted from the egg yolks. The neutralization potential of IgYs was examined by the plaque reduction neutralization test (PRNT). The bioutility of IgYs was examined in Syrian hamsters in vivo. (Results) IgYs exhibited typical banding patterns in SDS-PAGE and Western blot and were immunoreactive against S1, S1-RBD, and S2 subunits. The plaque reduction neutralization test (PRNT) showed that all purified IgYs potently neutralized different SARS-CoV-2 strains in vitro. In Syrian hamsters, the combination of IgYs for S1-RBD and S2 subunits administered before or after SARS-CoV-2 infection effectively restored body weight loss and reduced intrapulmonary lesions and the amount of immunoreactive N protein-positive cells, which were caused by SARS-CoV-2 infection. (Conclusions) Collectively, IgYs specific for S protein subunits effectively neutralized SARS-CoV-2 in vitro and in vivo and may serve as prophylactic or therapeutic antibodies in the prevention or treatment of COVID-19.

9.
J Agric Food Chem ; 69(8): 2422-2437, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33617267

RESUMO

Lactulose, as a prebiotic, can be utilized by human gut microbiota and stimulate their growth. Although microbiota modulation has become an emerging approach to manage many diseases and can be achieved by the administration of prebiotics, fewer investigations have been carried out on the therapeutic mechanism of lactulose. Two trehalose analogs, lactulose and melibiose, were identified as having a neuroprotective effect in polyglutamine and Parkinson disease models. In this study, we examined lactulose and melibiose in a mouse primary hippocampal neuronal culture under the toxicity of oligomeric Aß25-35. Lactulose was further tested in vivo because its effective concentration is lower than that of melibiose. Lactulose and trehalose were applied individually to mice before a bilateral intrahippocampal CA1 injection of oligomeric Aß25-35. The administration of lactulose and trehalose attenuated the short-term memory and the learning retrieval of Alzheimer's disease (AD) mice. From a pathological analysis, we found that the pretreatment of lactulose and trehalose decreased neuroinflammation and increased the levels of the autophagic pathways. These results suggest that the neuroprotective effects of both lactulose and trehalose are achieved through anti-inflammation and autophagy. In addition, lactulose was better than trehalose in the enhancement of the synaptic protein expression level in AD mice. Therefore, lactulose could potentially be developed into a preventive and/or therapeutic disaccharide for AD.


Assuntos
Doença de Alzheimer , Autofagia Mediada por Chaperonas , Fármacos Neuroprotetores , Doença de Alzheimer/tratamento farmacológico , Animais , Autofagia , Cognição , Modelos Animais de Doenças , Lactulose , Macroautofagia , Camundongos , Fármacos Neuroprotetores/farmacologia , Prebióticos
10.
J Mol Neurosci ; 70(7): 1140-1152, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32170713

RESUMO

Many protein aggregation diseases (PAD) affect the nervous system. Deposits of aggregated disease-specific proteins are found within or around the neuronal cells of neurodegenerative diseases. Although the main protein component is disease-specific, oligomeric aggregates are presumed to be the key agents causing the neurotoxicity. Evidence has shown that protein aggregates cause a chronic inflammatory reaction in the brain, resulting in neurodegeneration. Therefore, strategies targeting anti-inflammation could be beneficial to the therapeutics of PAD. PHA-767491 was originally identified as an inhibitor of CDC7/CDK9 and was found to reduce TDP-43 phosphorylation and prevent neurodegeneration in TDP-43 transgenic animals. We recently identified PHA-767491 as a GSK-3ß inhibitor. In this study, we established mouse hippocampal primary culture with tau-hyperphosphorylation through the activation of GSK-3ß using Wortmannin and GF109203X. We found that PHA-767491 significantly improved the neurite outgrowth of hippocampal primary neurons against the neurotoxicity induced by GSK-3ß. We further showed that PHA-767491 had neuroprotective ability in hippocampal primary culture under oligomeric Aß treatment. In addition, PHA-767491 attenuated the neuroinflammation in mouse cerebellar slice culture with human TBP-109Q agitation. Further study of SCA17 transgenic mice carrying human TBP-109Q showed that PHA-767491 ameliorated the gait ataxia and the inflammatory response both centrally and peripherally. Our findings suggest that PHA-767491 has a broad spectrum of activity in the treatment of different PAD and that this activity could be based on the anti-inflammation mechanism.


Assuntos
Anti-Inflamatórios/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Piperidonas/farmacologia , Agregação Patológica de Proteínas/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Pirróis/farmacologia , Peptídeos beta-Amiloides/toxicidade , Animais , Anti-Inflamatórios/uso terapêutico , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Quinase 9 Dependente de Ciclina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Hipocampo/citologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Piperidonas/uso terapêutico , Agregação Patológica de Proteínas/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Pirróis/uso terapêutico
11.
Neurochem Int ; 125: 175-186, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30707915

RESUMO

The pathogenesis of Alzheimer's disease (AD) is involved in the aggregation of misfolded amyloid ß (Aß), which upregulates the activity of acetylcholinesterase (AChE), increases the production of reactive oxygen species (ROS), enhances neuroinflammation, and eventually leads to neuronal death. Therefore, compounds targeting these mechanisms may be candidates for multitarget drugs in AD treatment. We found that two quinoline derivatives, VB-030 and VB-037, markedly reduced Aß aggregation and ROS levels in the thioflavin T biochemical assay and Tet-On Aß-green fluorescent protein (GFP) 293 AD cell model. These compounds further improved neurite outgrowth, reduced AChE activity and upregulated the molecular chaperone heat shock protein family B [small] member 1 (HSP27), whereas knockdown of HSP27 counteracted the compounds' neuroprotective effects on the Tet-On Aß-GFP SH-SY5Y AD neuronal model. Furthermore, VB-037 attenuated lipopolysaccharide (LPS)/interferon (IFN)-γ-induced activation of BV-2 microglial cells. In addition, VB-037 demonstrated its potential to diminish LPS/IFN-γ-induced upregulation of caspase 1 activity, expression of interleukin (IL)-1ß, and active phosphorylation of mitogen-activated protein kinase 14 (P38), mitogen-activated protein kinase 8 (JNK), and Jun proto-oncogene, AP-1 transcription factor subunit (JUN) signalings, as well as improve cell viability in the Tet-On Aß-GFP SH-SY5Y AD neuronal model. Our findings strongly indicate the potential of VB-037 for modifying AD progression by targeting multiple mechanisms, thereby offering a new drug development avenue for AD treatment.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Mediadores da Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Crescimento Neuronal/fisiologia , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/antagonistas & inibidores , Animais , Linhagem Celular , Curcumina/farmacologia , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Crescimento Neuronal/efeitos dos fármacos , Agregados Proteicos/efeitos dos fármacos , Agregados Proteicos/fisiologia , Proto-Oncogene Mas , Quinolinas/química , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
Psychopharmacology (Berl) ; 236(2): 763-773, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30426182

RESUMO

RATIONALE: Hyperglycemia accelerates the progression of Alzheimer's disease (AD), and GSK3ß plays a potential link between AD and hyperglycemia. Therefore, a direct or indirect GSK3ß inhibition may have potential to delay the progression of AD. Our previous biochemical assay identified AM404 as a GSK3ß inhibitor at high dose (IC50 = 5.353 µM); however, other study suggests that AM404 impaired synaptic plasticity of hippocampus at high dose (10 mg/kg; i.p.). Therefore, the dose and duration of treatment are crucial for the effects of AM404. OBJECTIVE: The effects and molecular mechanisms of AM404 at low dose were evaluated from in vitro to in vivo models. METHODS: AM404 (0.1-0.5 µM) was tested on tau hyperphosphorylated mouse hippocampal primary cultures treated with Wortmannin (WT) and GF109203X (GFX). Hyperglycemic triple transgenic AD (3×Tg-AD) mice at 6 months old were intraperitoneally injected with AM404 (0.25 mg/kg) for 4 weeks. The spatial learning and memory of mice were measured using the Morris water maze. Mouse brain and serum samples were collected for pathological analyses. RESULTS: AM404 (0.5 µM) exhibited significantly augmented neuroprotection toward tau hyperphosphorylation in primary cultures. The chronic systemic administration of AM404 (0.25 mg/kg) attenuated cognitive deficits in hyperglycemic 3×Tg-AD mice. Moreover, chronic low dose of AM404 significantly attenuated Aß production, tau protein phosphorylation, and inflammation associated with an increase of pS473Akt and pS9-GSK3ß. Therefore, AM404 at low dose, not only increased neuroprotection, but also ameliorated cognitive deficit, could be partly by regulating the Akt/GSK3ß signaling, which may contribute to downregulation of Aß, tau hyperphosphorylation, and inflammation in hyperglycemic 3×Tg-AD mice. CONCLUSIONS: These results highlight that chronic administration of AM404 at low dose may be through the Akt/GSK3ß pathway to ameliorate the impairment in hyperglycemic 3×Tg-AD mice.


Assuntos
Ácidos Araquidônicos/administração & dosagem , Disfunção Cognitiva/tratamento farmacológico , Hiperglicemia/tratamento farmacológico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Relação Dose-Resposta a Droga , Esquema de Medicação , Feminino , Glicogênio Sintase Quinase 3 beta , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Hiperglicemia/genética , Hiperglicemia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Camundongos Transgênicos , Gravidez , Proteínas tau/genética , Proteínas tau/metabolismo
13.
J Agric Food Chem ; 67(1): 81-89, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30541279

RESUMO

Utilizing the N-methyl-d-aspartate (NMDA) receptor antagonist as a strategy, memantine is the only agent available for clinically treating mild to severe Alzheimer's disease (AD). Our aim was to develop novel similar herb-based drugs. Using a screening platform, ginkgolide A (GA), a pure compound extracted from Ginkgo biloba, was found to attenuate amyloid ß (Aß)-induced abnormal depolarization in mouse primary cortical neurons. Using receptor agonists, it was determined that GA inhibits both NMDA receptors and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Furthermore, the Aß-induced increase in c-Jun N-terminal kinase phosphorylation in neurons was prevented by GA. Body weight, glutamate oxaloacetate transaminase, glutamic-pyruvic transaminase, liver histology, and kidney histology were similar when the wild-type/AD animal model mice with and without GA treatment were compared. This pure compound improves the memory of wild-type mice. Our findings indicate that GA has great potential clinically for the treatment of AD because it might target NMDA receptors just like memantine.


Assuntos
Doença de Alzheimer/prevenção & controle , Peptídeos beta-Amiloides/toxicidade , Córtex Cerebral/efeitos dos fármacos , Ginkgo biloba/química , Ginkgolídeos/administração & dosagem , Lactonas/administração & dosagem , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Extratos Vegetais/administração & dosagem , Doença de Alzheimer/etiologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
14.
J Agric Food Chem ; 56(6): 1992-8, 2008 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-18290622

RESUMO

Five lipase genes have been identified and sequenced from Candida rugosa. However, as the sequences of LIP multigene family are extremely closely related, it is difficult to characterize the expression spectrum of LIP genes. In the present work we have cloned, sequenced, and analyzed the promoters of these five LIP isoform genes, and several putative transcriptional elements including oleate response element (ORE) and upstream activation sequence 1 (UAS1) were identified. A quantitative real-time RT-PCR method was developed for determining the differential expression of C. rugosa lipase family genes in response to various environmental and nutritional factors. While all five LIP genes display significant changes in mRNA expression under oleic acid and/or olive oil culture conditions, LIP2 showed the strongest induction (456-fold) in response to oleic acid. LIP transcription and promoter regulation were studied by assaying the beta-galactosidase activities of promoter-lacZ fusions in Saccharomyces cerevisiae. Three of the LIP genes, LIP3, LIP4, and LIP5, showed significant induction by oleic acid, and their ORE and UAS1 elements are essential for induction by oleic acid. Together, this suggests that the multiple lipase expression profiles may be due to differential transcriptional regulation of the LIP genes in response to environment or nutritional factors.


Assuntos
Candida/enzimologia , Proteínas Fúngicas/genética , Expressão Gênica , Lipase/genética , Regiões Promotoras Genéticas/genética , Candida/genética , Candida/crescimento & desenvolvimento , Clonagem Molecular , Meios de Cultura , Meio Ambiente , Indução Enzimática/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Ácido Oleico/farmacologia , Azeite de Oliva , Óleos de Plantas/farmacologia , Reação em Cadeia da Polimerase , RNA Mensageiro/análise , Análise de Sequência de DNA
15.
Parkinsonism Relat Disord ; 51: 61-66, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29530724

RESUMO

BACKGROUND: Mutations in the GRN (granulin precursor) are a frequent cause of frontotemporal dementia (FTD) and other atypical parkinsonian disorders. However, the frequency of GRN mutations in Asian patients with atypical parkinsonian disorders is still uncertain. METHODS: We screened GRN mutations by sequencing cDNA from 98 patients with FTD or atypical parkinsonian disorders. The functional properties of the identified mutation were evaluated by overexpression in human embryonic kidney (HEK)-293 cells. RESULTS: We identified a new missense (GRN p.T487I) mutation in a female patient with undefined atypical parkinsonism. The overexpression experiment further demonstrated that p.T487I mutation reduced the progranulin protein level and stability in HEK-293 cells. CONCLUSION: GRN p.T487I mutation, which decreases the stability of progranulin protein, could be a new causative mutation in patients with atypical parkinsonian disorders.


Assuntos
Demência Frontotemporal/genética , Transtornos Parkinsonianos/genética , Progranulinas/genética , Idoso , Feminino , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Taiwan
16.
J Agric Food Chem ; 55(22): 8995-9005, 2007 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-17902621

RESUMO

The need for alternative energy sources that combine environmental friendliness with biodegradability, low toxicity, renewability, and less dependence on petroleum products has never been greater. One such energy source is referred to as biodiesel. This can be produced from vegetable oils, animal fats, microalgal oils, waste products of vegetable oil refinery or animal rendering, and used frying oils. Chemically, they are known as monoalkyl esters of fatty acids. The conventional method for producing biodiesel involves acid and base catalysts to form fatty acid alkyl esters. Downstream processing costs and environmental problems associated with biodiesel production and byproducts recovery have led to the search for alternative production methods and alternative substrates. Enzymatic reactions involving lipases can be an excellent alternative to produce biodiesel through a process commonly referred to alcoholysis, a form of transesterification reaction, or through an interesterification (ester interchange) reaction. Protein engineering can be useful in improving the catalytic efficiency of lipases as biocatalysts for biodiesel production. The use of recombinant DNA technology to produce large quantities of lipases, and the use of immobilized lipases and immobilized whole cells, may lower the overall cost, while presenting less downstream processing problems, to biodiesel production. In addition, the enzymatic approach is environmentally friendly, considered a "green reaction", and needs to be explored for industrial production of biodiesel.


Assuntos
Hidrolases de Éster Carboxílico , Fontes Geradoras de Energia , Gorduras , Óleos de Plantas , Alquilação , Animais , Bactérias/enzimologia , Hidrolases de Éster Carboxílico/metabolismo , Enzimas Imobilizadas , Esterificação , Ácidos Graxos/metabolismo , Fungos/enzimologia , Gasolina , Engenharia de Proteínas
17.
J Agric Food Chem ; 55(4): 1256-63, 2007 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-17256953

RESUMO

A fusion gene that encoded a polypeptide of 1495 amino acids was constructed from the beta-amylase (BA) gene of Clostridium thermosulfurogenes and trehalose synthase (TS) gene of Thermus thermophilus. The fused gene was overexpressed in Escherichia coli, and a recombinant bifunctional fusion protein with BA at the N-terminal (BATS) or C-terminal (TSBA) of TS having both beta-amylase and trehalose synthase activities with an apparent molecular mass of 164 kDa was obtained. BATS or TSBA catalyzes the sequential reaction in which maltose is formed from starch and then is converted into trehalose. The Km values of the BATS and TSBA fusion enzymes for the reaction from starch to trehalose were smaller than those of an equimolar mixture of BA and TS (BA/TS). On the other hand, the kcat value of BATS approximated that of the BA/TS mixture, but that of TSBA exceeded it. TSBA showed much higher sequential catalytic efficiency than the separately expressed BA/TS mixture. The catalytic efficiency of TSBA or BATS was 3.4 or 2.4 times higher, respectively, than that of a mixture of individual enzymes, showing the kinetic advantage of the fusion enzyme. The thermal stability readings of the recombinant fusion enzymes BATS and TSBA were better than that of the mixture of individual recombinant enzymes. These results apparently demonstrate that fusion enzymes catalyzing sequential reactions have kinetic advantages over a mixture of both enzymes.


Assuntos
Glucosiltransferases/genética , Proteínas Recombinantes de Fusão/genética , Amido/metabolismo , Trealose/metabolismo , beta-Amilase/genética , Clostridium/enzimologia , Clostridium/genética , Escherichia coli/genética , Expressão Gênica , Cinética , Thermus thermophilus/enzimologia , Thermus thermophilus/genética
18.
J Agric Food Chem ; 55(3): 714-22, 2007 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-17263465

RESUMO

A chitinase cDNA clone (CpCHI, 1002 bp) was isolated from papaya fruit, which encoded a 275 amino acid protein containing a 28 amino acid signal peptide in the N-terminal end. The predicted molecular mass of the mature protein was 26.2 kDa, and its pI value was 6.32. On the basis of its amino acid sequence homology with other plant chitinases, it was classified as a class IV chitinase. An active recombinant CpCHI enzyme was overexpressed in Escherichia coli. The purified recombinant papaya chitinase showed an optimal reaction temperature at 30 degrees C and a broad optimal pH ranging from 5.0 to 9.0. The recombinant enzyme was quite stable, retaining >64% activity for 3 weeks at 30 degrees C. The spore germination of Alternaria brassicicola could be completely inhibited by a 76 nM level of recombinant CpCHI. Recombinant CpCHI also showed antibacterial activity in which 50% of E. coli was inhibited by a 2.5 microM concentration of the enzyme.


Assuntos
Carica/enzimologia , Quitinases/química , Quitinases/genética , Frutas/enzimologia , Fungicidas Industriais , Alternaria/efeitos dos fármacos , Sequência de Aminoácidos , Sequência de Bases , Quitinases/farmacologia , Escherichia coli/genética , Fungicidas Industriais/farmacologia , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia
19.
J Agric Food Chem ; 55(9): 3435-43, 2007 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-17394343

RESUMO

Trehalose synthase (TS) from Thermus thermophilus (TtTS) is a thermostable enzyme that catalyzes the conversion of maltose into trehalose by intramolecular transglucosylation. It has a relatively higher thermophilicity and thermostability and a better conversion ratio for trehalose production than other known TSs from different sources at present. By amino acid sequences and the schematic motif alignment of trehalose synthase-related enzymes, it was found that TtTS (965 amino acid residues) contains a particular C-terminal fragment that is not found in most other TSs. To verify the function of this fragment, C-terminal deletion and enzyme fusion were respectively performed to explain the important role this fragment plays in the formation of trehalose. First, the C terminus (TtTSDeltaN, 415 amino acid residues) of TtTS is deleted to construct a TtTSDeltaC containing 550 amino acids. Furthermore, a novel cold-active TS was cloned and purified from Deinococcus radiodurans (DrTS, 552 amino acid residues) and then a fusion protein was created with TtTSDeltaN at the C terminus of DrTS (DrTS-TtTSDeltaN). It was found that the recombinant TtTStriangle upC enzyme had a lower thermostability and a higher byproduct than TtTS in catalyzing the conversion of maltose into trehalose. On the other hand, the recombinant DrTS-TtTSDeltaN enzyme had a higher thermostability and a lower byproduct than DrTS in their reactions. The above-mentioned results allowed the inference that the C terminus of TtTS plays a key role in maintaining its thermostability and hence in modulating the side reaction to reduce glucose production at a high temperature. A new, simple, and fast method to improve thermophilicity by fusing this fragment with particular conformation to a thermolabile enzyme is offered.


Assuntos
Glucosiltransferases/química , Glucosiltransferases/metabolismo , Temperatura Alta , Thermus thermophilus/enzimologia , Trealose/biossíntese , Sequência de Aminoácidos , Clonagem Molecular , Estabilidade Enzimática , Glucosiltransferases/genética , Dados de Sequência Molecular , Proteínas Recombinantes , Relação Estrutura-Atividade , Trealose/química
20.
J Agric Food Chem ; 55(13): 5103-8, 2007 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-17536826

RESUMO

Candida rugosa (formerly Candida cylindracea) lipase (CRL) is an important industrial enzyme that is widely used in biotechnological applications such as the production of fatty acids and the synthesis of various esters. CRL comprises at least seven isozymes (LIP1-LIP7), which share a similar amino acid sequence but with different specificities for substrates. Previously, LIP4 was reported to have higher esterase activity toward long acyl-chain ester and lower lipase activity toward triglycerides. A296 and V344 of LIP4 were predicted to play decisive roles in its substrate specificity. In this study, site-specific saturation mutagenesis has been employed to study the substrate specificity of LIP4. Point mutations were separately introduced into A296 and V344 positions using degenerate primer sets containing 32 codons to generate two libraries of variants. LIP4 variants were heterologously expressed in the yeast Pichia pastoris. A specific plate assay was used to identify lipase-producing P. pastoris clones in a medium containing tributyrin. LIP4 variants with high activity toward short fatty acyl-chain triglyceride (tributyrin) were screened. Specificity analysis and biochemical characterization indicated that the recombinant variants A296I, V344Q, and V344H had properties remarkably different from those of wild-type LIP4. All three variant enzymes had significantly higher specific activities toward tributyrin than LIP4. In addition to short-chain triglyceride, A296I and V344Q also improved hydrolytic activities of triglycerides toward medium- and long-chain triglycerides tested. The results suggested that A296 played an important role in lipase activity and high-temperature dependence of LIP4, whereas it had no effect on the chain-length specificity in lipolytic reaction. The V344 residue had a significant effect on the substrate chain-length specificity of LIP4.


Assuntos
Candida/enzimologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Lipase/genética , Lipase/metabolismo , Mutagênese Sítio-Dirigida , Sítios de Ligação/genética , Proteínas Fúngicas/química , Lipase/química , Mutação Puntual , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA