Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Sensors (Basel) ; 23(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36850771

RESUMO

This paper defines a smart home use case to automatically adjust home temperature and/or hot water. The main objective is to reduce the energy consumption of cooling, heating and hot water systems in smart homes. To this end, the residents set a temperature (i.e., X degree Celsius) for home and/or hot water. When the residents leave homes (e.g., for work), they turn off the cooling or heating devices. A few minutes before arriving at their residences, the cooling or heating devices start working automatically to adjust the home or water temperature according to the residents' preference (i.e., X degree Celsius). This can help reduce the energy consumption of these devices. To estimate the arrival time of the residents (i.e., drivers), this paper uses a machine learning-based street traffic prediction system. Unlike many related works that use machine learning for tracking and predicting residents' behaviors inside their homes, this paper focuses on predicting resident behavior outside their home (i.e., arrival time as a context) to reduce the energy consumption of smart homes. One main objective of this paper is to find the most appropriate machine learning and neural network-based (MLNN) algorithm that can be integrated into the street traffic prediction system. To evaluate the performance of several MLNN algorithms, we utilize an Uber's dataset for the city of San Francisco and complete the missing values by applying an imputation algorithm. The prediction system can also be used as a route recommender to offer the quickest route for drivers.

2.
Sensors (Basel) ; 20(13)2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32646025

RESUMO

With the widespread use of embedded sensing capabilities of mobile devices, there has been unprecedented development of context-aware solutions. This allows the proliferation of various intelligent applications, such as those for remote health and lifestyle monitoring, intelligent personalized services, etc. However, activity context recognition based on multivariate time series signals obtained from mobile devices in unconstrained conditions is naturally prone to imbalance class problems. This means that recognition models tend to predict classes with the majority number of samples whilst ignoring classes with the least number of samples, resulting in poor generalization. To address this problem, we propose augmentation of the time series signals from inertial sensors with signals from ambient sensing to train Deep Convolutional Neural Network (DCNNs) models. DCNNs provide the characteristics that capture local dependency and scale invariance of these combined sensor signals. Consequently, we developed a DCNN model using only inertial sensor signals and then developed another model that combined signals from both inertial and ambient sensors aiming to investigate the class imbalance problem by improving the performance of the recognition model. Evaluation and analysis of the proposed system using data with imbalanced classes show that the system achieved better recognition accuracy when data from inertial sensors are combined with those from ambient sensors, such as environmental noise level and illumination, with an overall improvement of 5.3% accuracy.

3.
Sensors (Basel) ; 19(21)2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31671918

RESUMO

As the vast amount of data in social Internet of Things (IoT) environments considering interactions between IoT and people is accumulated and processed through cloud and big data technologies, the services that utilize them are applied in various fields. The trust between IoT devices and their data is recognized as the core of IoT ecosystem creation and growth. Connection with suspicious IoT devices may pose a risk to services and system operation. Therefore, it is essential to analyze and manage trust information for devices, services, and people, as well as to provide the trust information to the other devices or users that need it. This paper presents a trust information management framework which contains a generic IoT reference model with trust capabilities to achieve the goal of converged trust information management. Additionally, a trust information management platform (TIMP) consisting of trust agents, trust information brokers, and trust information management systems has been proposed, which aims to provide trustworthy and safe interactions among people, virtual objects, and physical things. Implementing and deploying a TIMP enables a trustworthy ecosystem to be built while activating social IoT businesses by reducing transaction costs, as well as by eliminating the uncertainties in the use of social IoT services and data transactions.


Assuntos
Algoritmos , Gestão da Informação , Internet das Coisas , Modelos Teóricos
4.
Sensors (Basel) ; 19(7)2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30970678

RESUMO

Recently, using advanced cryptographic techniques to process, store, and share datasecurely in an untrusted cloud environment has drawn widespread attention from academicresearchers. In particular, Ciphertext-Policy Attribute-Based Encryption (CP-ABE) is a promising,advanced type of encryption technique that resolves an open challenge to regulate fine-grainedaccess control of sensitive data according to attributes, particularly for Internet of Things (IoT)applications. However, although this technique provides several critical functions such as dataconfidentiality and expressiveness, it faces some hurdles including revocation issues and lack ofmanaging a wide range of attributes. These two issues have been highlighted by many existingstudies due to their complexity which is hard to address without high computational cost affectingthe resource-limited IoT devices. In this paper, unlike other survey papers, existing single andmultiauthority CP-ABE schemes are reviewed with the main focus on their ability to address therevocation issues, the techniques used to manage the revocation, and comparisons among themaccording to a number of secure cloud storage criteria. Therefore, this is the first review paperanalysing the major issues of CP-ABE in the IoT paradigm and explaining the existing approachesto addressing these issues.

5.
Sensors (Basel) ; 17(6)2017 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-28598401

RESUMO

In the blooming era of the Internet of Things (IoT), trust has been accepted as a vital factor for provisioning secure, reliable, seamless communications and services. However, a large number of challenges still remain unsolved due to the ambiguity of the concept of trust as well as the variety of divergent trust models in different contexts. In this research, we augment the trust concept, the trust definition and provide a general conceptual model in the context of the Social IoT (SIoT) environment by breaking down all attributes influencing trust. Then, we propose a trust evaluation model called REK, comprised of the triad of trust indicators (TIs) Reputation, Experience and Knowledge. The REK model covers multi-dimensional aspects of trust by incorporating heterogeneous information from direct observation (as Knowledge TI), personal experiences (as Experience TI) to global opinions (as Reputation TI). The associated evaluation models for the three TIs are also proposed and provisioned. We then come up with an aggregation mechanism for deriving trust values as the final outcome of the REK evaluation model. We believe this article offers better understandings on trust as well as provides several prospective approaches for the trust evaluation in the SIoT environment.

6.
Sensors (Basel) ; 16(2): 215, 2016 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-26861345

RESUMO

The development of an efficient and cost-effective solution to solve a complex problem (e.g., dynamic detection of toxic gases) is an important research issue in the industrial applications of the Internet of Things (IoT). An industrial intelligent ecosystem enables the collection of massive data from the various devices (e.g., sensor-embedded wireless devices) dynamically collaborating with humans. Effectively collaborative analytics based on the collected massive data from humans and devices is quite essential to improve the efficiency of industrial production/service. In this study, we propose a collaborative sensing intelligence (CSI) framework, combining collaborative intelligence and industrial sensing intelligence. The proposed CSI facilitates the cooperativity of analytics with integrating massive spatio-temporal data from different sources and time points. To deploy the CSI for achieving intelligent and efficient industrial production/service, the key challenges and open issues are discussed, as well.

7.
Sensors (Basel) ; 16(7)2016 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-27355951

RESUMO

User location is crucial context information for future smart homes where many location based services will be proposed. This location necessarily means that User Location Discovery (ULD) will play an important role in future smart homes. Concerns about privacy and the need to carry a mobile or a tag device within a smart home currently make conventional ULD systems uncomfortable for users. Future smart homes will need a ULD system to consider these challenges. This paper addresses the design of such a ULD system for context-aware services in future smart homes stressing the following challenges: (i) users' privacy; (ii) device-/tag-free; and (iii) fault tolerance and accuracy. On the other hand, emerging new technologies, such as the Internet of Things, embedded systems, intelligent devices and machine-to-machine communication, are penetrating into our daily life with more and more sensors available for use in our homes. Considering this opportunity, we propose a ULD system that is capitalizing on the prevalence of sensors for the home while satisfying the aforementioned challenges. The proposed sensor network-based and user-friendly ULD system relies on different types of inexpensive sensors, as well as a context broker with a fuzzy-based decision-maker. The context broker receives context information from different types of sensors and evaluates that data using the fuzzy set theory. We demonstrate the performance of the proposed system by illustrating a use case, utilizing both an analytical model and simulation.

8.
ScientificWorldJournal ; 2014: 359897, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24696640

RESUMO

Wireless sensor network (WSN) typically has energy consumption restriction. Designing energy-aware routing protocol can significantly reduce energy consumption in WSNs. Energy-aware routing protocols can be classified into two categories, energy savers and energy balancers. Energy saving protocols are used to minimize the overall energy consumed by a WSN, while energy balancing protocols attempt to efficiently distribute the consumption of energy throughout the network. In general terms, energy saving protocols are not necessarily good at balancing energy consumption and energy balancing protocols are not always good at reducing energy consumption. In this paper, we propose an energy-aware routing protocol (ERP) for query-based applications in WSNs, which offers a good trade-off between traditional energy balancing and energy saving objectives and supports a soft real time packet delivery. This is achieved by means of fuzzy sets and learning automata techniques along with zonal broadcasting to decrease total energy consumption.


Assuntos
Redes de Comunicação de Computadores/instrumentação , Conservação de Recursos Energéticos/métodos , Fontes de Energia Elétrica , Armazenamento e Recuperação da Informação/métodos , Processamento de Sinais Assistido por Computador/instrumentação , Transdutores , Tecnologia sem Fio/instrumentação , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA