Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(27): e2317316121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38917013

RESUMO

A dispersed cytoplasmic distribution of mitochondria is a hallmark of normal cellular organization. Here, we have utilized the expression of exogenous Trak2 in mouse oocytes and embryos to disrupt the dispersed distribution of mitochondria by driving them into a large cytoplasmic aggregate. Our findings reveal that aggregated mitochondria have minimal impact on asymmetric meiotic cell divisions of the oocyte. In contrast, aggregated mitochondria during the first mitotic division result in daughter cells with unequal sizes and increased micronuclei. Further, in two-cell embryos, microtubule-mediated centering properties of the mitochondrial aggregate prevent nuclear centration, distort nuclear shape, and inhibit DNA synthesis and the onset of embryonic transcription. These findings demonstrate the motor protein-mediated distribution of mitochondria throughout the cytoplasm is highly regulated and is an essential feature of cytoplasmic organization to ensure optimal cell function.


Assuntos
Blastocisto , Núcleo Celular , Mitocôndrias , Oócitos , Animais , Mitocôndrias/metabolismo , Blastocisto/metabolismo , Blastocisto/citologia , Camundongos , Núcleo Celular/metabolismo , Oócitos/metabolismo , Oócitos/citologia , Feminino , Desenvolvimento Embrionário/fisiologia , Microtúbulos/metabolismo , Mitose , Meiose/fisiologia
2.
Biol Reprod ; 106(2): 366-377, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35094043

RESUMO

The development of oocytes and early embryos is dependent on mitochondrial ATP production. This reliance on mitochondrial activity, together with the exclusively maternal inheritance of mitochondria in development, places mitochondria as central regulators of both fertility and transgenerational inheritance mechanisms. Mitochondrial mass and mtDNA content massively increase during oocyte growth. They are highly dynamic organelles and oocyte maturation is accompanied by mitochondrial trafficking around subcellular compartments. Due to their key roles in generation of ATP and reactive oxygen species (ROS), oocyte mitochondrial defects have largely been linked with energy deficiency and oxidative stress. Pharmacological treatments and mitochondrial supplementation have been proposed to improve oocyte quality and fertility by enhancing ATP generation and reducing ROS levels. More recently, the role of mitochondria-derived metabolites in controlling epigenetic modifiers has provided a mechanistic basis for mitochondria-nuclear crosstalk, allowing adaptation of gene expression to specific metabolic states. Here, we discuss the multi-faceted mechanisms by which mitochondrial function influence oocyte quality, as well as longer-term developmental events within and across generations.


Assuntos
Fertilidade , Mitocôndrias , Oócitos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Oócitos/metabolismo , Oogênese/genética , Espécies Reativas de Oxigênio/metabolismo
3.
Development ; 144(20): 3829-3839, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28935709

RESUMO

In somatic cells spindle microtubules are nucleated from centrosomes that act as major microtubule organizing centers (MTOCs), whereas oocytes form meiotic spindles by assembling multiple acentriolar MTOCs without canonical centrosomes. Aurora A and Plk1 are required for these events, but the underlying mechanisms remain largely unknown. Here we show that CIP2A regulates MTOC organization by recruiting aurora A and Plk1 at spindle poles during meiotic maturation. CIP2A colocalized with pericentrin at spindle poles with a few distinct cytoplasmic foci. Although CIP2A has been identified as an endogenous inhibitor of protein phosphatase 2A (PP2A), overexpression of CIP2A had no effect on meiotic maturation. Depletion of CIP2A perturbed normal spindle organization and chromosome alignment by impairing MTOC organization. Importantly, CIP2A was reciprocally associated with CEP192, promoting recruitment of aurora A and Plk1 at MTOCs. CIP2A was phosphorylated by Plk1 at S904, which targets CIP2A to MTOCs and facilitates MTOC organization with CEP192. Our results suggest that CIP2A acts as a scaffold for CEP192-mediated MTOC assembly by recruiting Plk1 and aurora A during meiotic maturation in mouse oocytes.


Assuntos
Aurora Quinase A/genética , Autoantígenos/fisiologia , Proteínas de Ciclo Celular/fisiologia , Proteínas Cromossômicas não Histona/fisiologia , Proteínas de Membrana/fisiologia , Centro Organizador dos Microtúbulos , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Animais , Antígenos/metabolismo , Autoantígenos/genética , Proteínas de Ciclo Celular/genética , Centrossomo/metabolismo , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos , Citoplasma/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Meiose , Proteínas de Membrana/genética , Camundongos , Microtúbulos/metabolismo , Oócitos/metabolismo , Ovário/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , RNA Interferente Pequeno/metabolismo , Fuso Acromático/metabolismo , Quinase 1 Polo-Like
4.
FASEB J ; 33(3): 4432-4447, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30557038

RESUMO

Zinc plays an essential role in mammalian oocyte maturation, fertilization, and early embryogenesis, and depletion of zinc impairs cell cycle control, asymmetric division, and cytokinesis in oocyte. We report that zinc, via the actin nucleator Spire, acts as an essential regulator of the actin cytoskeleton remodeling during mouse oocyte maturation and fertilization. Depletion of zinc in the mouse oocyte impaired cortical and cytoplasmic actin formation. Spire is colocalized with zinc-containing vesicles via its zinc finger-containing Fab1, YOTB, Vac 1, EEA1 (FYVE) domain. Improper localization of Spire by zinc depletion or mutations in the FYVE domain impair cytoplasmic actin mesh formations and asymmetric division and cytokinesis of oocyte. All 3 major domains of the Spire are required for its proper localization and activity. After fertilization or parthenogenetic activation, Spire localization was dramatically altered following zinc release from the oocyte. Collectively, our data reveal novel roles for zinc in the regulation of the actin nucleator Spire by controlling its localization in mammalian oocyte.-Jo, Y.-J., Lee, I.-W., Jung, S.-M., Kwon, J., Kim, N.-H., Namgoong, S. Spire localization via zinc finger-containing domain is crucial for the asymmetric division of mouse oocyte.


Assuntos
Citoesqueleto de Actina/fisiologia , Divisão Celular Assimétrica/fisiologia , Meiose/fisiologia , Proteínas dos Microfilamentos/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Oócitos/metabolismo , Dedos de Zinco/fisiologia , Zinco/fisiologia , Citoesqueleto de Actina/ultraestrutura , Sequência de Aminoácidos , Animais , Citocinese , Vesículas Citoplasmáticas/metabolismo , Feminino , Forminas/metabolismo , Camundongos , Proteínas dos Microfilamentos/antagonistas & inibidores , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/genética , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Oócitos/citologia , Partenogênese/efeitos dos fármacos , Mutação Puntual , Mapeamento de Interação de Proteínas , Transporte Proteico , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Injeções de Esperma Intracitoplásmicas , Fuso Acromático/fisiologia , Fuso Acromático/ultraestrutura , Estrôncio/farmacologia
5.
Mol Reprod Dev ; 86(8): 972-983, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31136049

RESUMO

Mammalian oocytes lack centrioles but can generate bipolar spindles using several different mechanisms. For example, mouse oocytes have acentriolar microtubule organization centers (MTOCs) that contain many components of the centrosome, and which initiate microtubule polymerization. On the contrary, human oocytes lack MTOCs and the Ran-mediated mechanisms may be responsible for spindle assembly. Complete knowledge of the different mechanisms of spindle assembly is lacking in various mammalian oocytes. In this study, we demonstrate that both MTOC- and Ran-mediated microtubule nucleation are required for functional meiotic metaphase I spindle generation in porcine oocytes. Acentriolar MTOC components, including Cep192 and pericentrin, were absent in the germinal vesicle and germinal vesicle breakdown stages. However, they start to colocalize to the spindle microtubules, but are absent in the meiotic spindle poles. Knockdown of Cep192 or inhibition of Polo-like kinase 1 activity impaired the recruitment of Cep192 and pericentrin to the spindles, impaired microtubule assembly, and decreased the polar body extrusion rate. When the RanGTP gradient was perturbed by the expression of dominant negative or constitutively active Ran mutants, severe defects in microtubule nucleation and cytokinesis were observed, and the localization of MTOC materials in the spindles was abolished. These results demonstrate that the stepwise involvement of MTOC- and Ran-mediated microtubule assembly is crucial for the formation of meiotic spindles in porcine oocytes, indicating the diversity of spindle formation mechanisms among mammalian oocytes.


Assuntos
Centro Organizador dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Oócitos/metabolismo , Proteína ran de Ligação ao GTP/metabolismo , Animais , Oócitos/citologia , Suínos
6.
FASEB J ; 32(2): 625-638, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28970258

RESUMO

Mammalian oocytes lack a centriole that acts as a microtubule organization center (MTOC) in most somatic cells. During oocyte maturation, MTOCs undergo remodeling processes, including decondensation, fragmentation, and self-organization. However, the underlying mechanisms of MTOC remodeling in mouse oocytes are not well understood. We showed that two pericentriolar proteins, Cep192 and Cep152, play crucial roles during MTOC remodeling in mouse oocytes. Cep192 is present in MTOCs at all stages of oocyte maturation, and its depletion induces ablation of MTOCs, delay in spindle formation, and abnormal chromosomal alignment in spindles. In the case of Cep152, its localization on MTOCs is limited at the germinal vesicle stage and then disappears from the MTOCs after the germinal vesicle breakdown stage. Cep152 exclusion from MTOCs is involved in the fragmentation of MTOCs, and it is regulated by cyclin-dependent kinase 1 activity. Our results demonstrate the different roles of Cep192 and Cep152 in MTOC remodeling and a novel regulatory mechanism during meiotic spindle formation in mouse oocytes.-Lee, I.-W., Jo, Y.-J., Jung, S.-M., Wang, H.-Y., Kim, N.-H., Namgoong, S. Distinct roles of Cep192 and Cep152 in acentriolar MTOCs and spindle formation during mouse oocyte maturation.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Meiose/fisiologia , Centro Organizador dos Microtúbulos/metabolismo , Oócitos/metabolismo , Fuso Acromático/metabolismo , Animais , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Proteínas Cromossômicas não Histona/genética , Feminino , Camundongos , Oócitos/citologia , Fuso Acromático/genética
7.
J Virol ; 91(6)2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28077631

RESUMO

In order to produce a dually effective vaccine against H9 and H5 avian influenza viruses that aligns with the DIVA (differentiating infected from vaccinated animals) strategy, we generated a chimeric H9/H5N2 recombinant vaccine that expressed the whole HA1 region of A/CK/Korea/04163/04 (H9N2) and the HA2 region of recent highly pathogenic avian influenza (HPAI) A/MD/Korea/W452/14 (H5N8) viruses. The chimeric H9/H5N2 virus showed in vitro and in vivo growth properties and virulence that were similar to those of the low-pathogenic avian influenza (LPAI) H9 virus. An inactivated vaccine based on this chimeric virus induced serum neutralizing (SN) antibodies against both H9 and H5 viruses but induced cross-reactive hemagglutination inhibition (HI) antibody only against H9 viruses. Thus, this suggests its compatibility for use in the DIVA strategy against H5 strains. Furthermore, the chimeric H9/H5N2 recombinant vaccine protected immunized chickens against lethal challenge by HPAI H5N8 viruses and significantly attenuated virus shedding after infection by both H9N2 and HPAI H5N8 viruses. In mice, serological analyses confirmed that HA1- and HA2 stalk-specific antibody responses were induced by vaccination and that the DIVA principle could be employed through the use of an HI assay against H5 viruses. Furthermore, each HA1- and HA2 stalk-specific antibody response was sufficient to inhibit viral replication and protect the chimeric virus-immunized mice from lethal challenge with both mouse-adapted H9N2 and wild-type HPAI H5N1 viruses, although differences in vaccine efficacy against a homologous H9 virus (HA1 head domain immune-mediated protection) and a heterosubtypic H5 virus (HA2 stalk domain immune-mediated protection) were observed. Taken together, these results demonstrate that the novel chimeric H9/H5N2 recombinant virus is a low-pathogenic virus, and this chimeric vaccine is suitable for a DIVA vaccine with broad-spectrum neutralizing antibody against H5 avian influenza viruses.IMPORTANCE Current influenza virus killed vaccines predominantly induce antihemagglutinin (anti-HA) antibodies that are commonly strain specific in that the antibodies have potent neutralizing activity against homologous strains but do not cross-react with HAs of other influenza virus subtypes. In contrast, the HA2 stalk domain is relatively well conserved among subtypes, and recently, broadly neutralizing antibodies against this domain have been isolated. Therefore, in light of the need for a vaccine strain that applies the DIVA strategy utilizing an HI assay and induces broad cross-protection against H5N1 and H9N2 viruses, we generated a novel chimeric H9/H5N1 virus that expresses the entire HA1 portion from the H9N2 virus and the HA2 region of the heterosubtypic H5N8 virus. The chimeric H9/H5N2 recombinant vaccine protected immunized hosts against lethal challenge with H9N2 and HPAI H5N1 viruses with significantly attenuated virus shedding in immunized hosts. Therefore, this chimeric vaccine is suitable as a DIVA vaccine against H5 avian influenza viruses.


Assuntos
Vírus da Influenza A Subtipo H5N2/imunologia , Vírus da Influenza A Subtipo H9N2/imunologia , Influenza Aviária/prevenção & controle , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Galinhas , Vírus da Influenza A Subtipo H5N2/genética , Vírus da Influenza A Subtipo H5N2/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/crescimento & desenvolvimento , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Camundongos , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/genética , Vacinas de Produtos Inativados/imunologia , Vacinas Marcadoras/administração & dosagem , Vacinas Marcadoras/genética , Vacinas Marcadoras/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
8.
J Virol ; 91(11)2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28331080

RESUMO

Due to increasing concerns about human infection by various H7 influenza viruses, including recent H7N9 viruses, we evaluated the genetic relationships and cross-protective efficacies of three different Eurasian H7 avian influenza viruses. Phylogenic and molecular analyses revealed that recent Eurasian H7 viruses can be separated into two different lineages, with relatively high amino acid identities within groups (94.8 to 98.8%) and low amino acid identities between groups (90.3 to 92.6%). In vivo immunization with representatives of each group revealed that while group-specific cross-reactivity was induced, cross-reactive hemagglutination inhibition (HI) titers were approximately 4-fold lower against heterologous group viruses than against homologous group viruses. Moreover, the group I (RgW109/06) vaccine protected 100% of immunized mice from various group I viruses, while only 20 to 40% of immunized mice survived lethal challenge with heterologous group II viruses and exhibited high viral titers in the lung. Moreover, while the group II (RgW478/14) vaccine also protected mice from lethal challenge with group II viruses, it failed to elicit cross-protection against group I viruses. However, it is noteworthy that vaccination with RgAnhui1/13, a virus of a sublineage of group I, cross-protected immunized mice against lethal challenge with both group I and II viruses and significantly attenuated lung viral titers. Interestingly, immune sera from RgAnhui1/13-vaccinated mice showed a broad neutralizing spectrum rather than the group-specific pattern observed with the other viruses. These results suggest that the recent human-infective H7N9 strain may be a candidate broad cross-protective vaccine for Eurasian H7 viruses.IMPORTANCE Genetic and phylogenic analyses have demonstrated that the Eurasian H7 viruses can be separated into at least two different lineages, both of which contain human-infective fatal H7 viruses, including the recent novel H7N9 viruses isolated in China since 2013. Due to the increasing concerns regarding the global public health risk posed by H7 viruses, we evaluated the genetic relationships between Eurasian H7 avian influenza viruses and the cross-protective efficacies of three different H7 viruses: W109/06 (group I), W478/14 (group II), and Anhui1/13 (a sublineage of group I). While each vaccine induced group-specific antibody responses and cross-protective efficacy, only Anhui1/13 was able to cross-protect immunized hosts against lethal challenge across groups. In fact, the Anhui1/13 virus induced not only cross-protection but also broad serum neutralizing antibody responses against both groups of viruses. This suggests that Anhui1/13-like H7N9 viruses may be viable vaccine candidates for broad protection against Eurasian H7 viruses.


Assuntos
Proteção Cruzada , Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/imunologia , Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Reações Cruzadas , Testes de Inibição da Hemaglutinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Humanos , Subtipo H7N9 do Vírus da Influenza A/química , Subtipo H7N9 do Vírus da Influenza A/classificação , Influenza Humana/virologia , Pulmão/virologia , Camundongos , Infecções por Orthomyxoviridae/virologia , Filogenia , Vacinação , Vacinas de Produtos Inativados/imunologia
9.
J Nanosci Nanotechnol ; 18(3): 1901-1904, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29448679

RESUMO

Nanocrystalline diamond (NCD) films were grown by hot filament CVD and the precursor composition dependence of the structural properties was examined. Films grown at 1 and 2 CH4 Vol% were found to be NCD layers with grain sizes of ~23-25 nm while films grown at 3-5 Vol% were identified as the mixtures of microcrystalline diamond and graphitic phase. The sp2/sp3 bonded carbon ratio in the grown films increased as the CH4 content increased up to 3 Vol% and then decreased beyond 4 Vol%. Microstructure and deposition rate were also found to be affected by the precursor composition and the NCD film grown at 1 CH4 Vol% showed a very dense microstructure and the highest deposition rate of ~3 nm/min.

10.
Euro Surveill ; 22(1)2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28079520

RESUMO

A novel genotype of H5N6 influenza viruses was isolated from migratory birds in South Korea during November 2016. Domestic outbreaks of this virus were associated with die-offs of wild birds near reported poultry cases in Chungbuk province, central South Korea. Genetic analysis and animal studies demonstrated that the Korean H5N6 viruses are highly pathogenic avian influenza (HPAI) viruses and that these viruses are novel reassortants of at least three different subtypes (H5N6, H4N2 and H1N1).


Assuntos
Animais Selvagens/virologia , Aves/virologia , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/patogenicidade , Influenza Aviária/virologia , Animais , Surtos de Doenças/veterinária , Genótipo , Vírus da Influenza A Subtipo H1N1/classificação , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Aviária/diagnóstico , Influenza Aviária/epidemiologia , Filogenia , Aves Domésticas/virologia , Doenças das Aves Domésticas/epidemiologia , República da Coreia/epidemiologia , Análise de Sequência de DNA
11.
Clin Infect Dis ; 62(6): 755-60, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26679623

RESUMO

BACKGROUND: Although Middle East Respiratory Syndrome coronavirus (MERS-CoV) is characterized by a risk of nosocomial transmission, the detailed mode of transmission and period of virus shedding from infected patients are poorly understood. The aims of this study were to investigate the potential role of environmental contamination by MERS-CoV in healthcare settings and to define the period of viable virus shedding from MERS patients. METHODS: We investigated environmental contamination from 4 patients in MERS-CoV units of 2 hospitals. MERS-CoV was detected by reverse transcription polymerase chain reaction (PCR) and viable virus was isolated by cultures. RESULTS: Many environmental surfaces of MERS patient rooms, including points frequently touched by patients or healthcare workers, were contaminated by MERS-CoV. Viral RNA was detected up to five days from environmental surfaces following the last positive PCR from patients' respiratory specimens. MERS-CoV RNA was detected in samples from anterooms, medical devices, and air-ventilating equipment. In addition, MERS-CoV was isolated from environmental objects such as bed sheets, bedrails, IV fluid hangers, and X-ray devices. During the late clinical phase of MERS, viable virus could be isolated in 3 of the 4 enrolled patients on day 18 to day 25 after symptom onset. CONCLUSIONS: Most of touchable surfaces in MERS units were contaminated by patients and health care workers and the viable virus could shed through respiratory secretion from clinically fully recovered patients. These results emphasize the need for strict environmental surface hygiene practices, and sufficient isolation period based on laboratory results rather than solely on clinical symptoms.


Assuntos
Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Contaminação de Equipamentos , Equipamentos e Provisões Hospitalares/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio/isolamento & purificação , Eliminação de Partículas Virais , Adulto , Idoso , Roupas de Cama, Mesa e Banho/virologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/epidemiologia , Infecção Hospitalar/tratamento farmacológico , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/virologia , Surtos de Doenças/prevenção & controle , Feminino , Fômites , Pessoal de Saúde , Humanos , Pessoa de Meia-Idade , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , República da Coreia/epidemiologia , Análise de Sequência de DNA
13.
Arch Virol ; 161(10): 2749-64, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27424028

RESUMO

The continuous worldwide spread of highly pathogenic avian influenza (HPAI) H5N8 viruses among wild birds and poultry is a potential threat to public health. In the present study, we investigated the genetic characteristics of recent H5N8 viruses continuously isolated from migratory birds over two winters (2013-2014 and 2014-2015) in South Korea. Genetic and phylogenetic analysis demonstrated that the 2014-2015 HPAI H5N8 viruses are closely related to the 2013-2014 viruses, including virulence markers; however, all eight gene segments of 2014-2015 H5N8 viruses clustered in different phylogenetic branches from 2013-2014 H5N8 viruses, except the A/Em/Korea/W492/2015 virus. The H5N8 viruses of Europe and North America belong to sublineages of the 2013-2014 Korean H5N8 viruses but differ from the 2014-2015 Korean H5N8 viruses. Further hemagglutination inhibition (HI) assay results showed that there were 2-to-4 fold differences in HI titer between 2013-2014 and 2014-2015 H5N8 viruses. Taken together, our results suggested that the 2014-2015 Korean H5N8 viruses were genetically and serologically different from those of 2013-2014 winter season H5N8 viruses, including those from Europe and North America.


Assuntos
Genótipo , Vírus da Influenza A Subtipo H5N8/genética , Vírus da Influenza A Subtipo H5N8/isolamento & purificação , Influenza Aviária/virologia , Sorogrupo , Animais , Aves , Análise por Conglomerados , Testes de Inibição da Hemaglutinação , Vírus da Influenza A Subtipo H5N8/classificação , Vírus da Influenza A Subtipo H5N8/imunologia , Filogenia , República da Coreia , Análise de Sequência de DNA , Homologia de Sequência
14.
Anticancer Res ; 44(2): 521-532, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38307549

RESUMO

BACKGROUND/AIM: The effectiveness of adoptive T cell therapy for solid tumors remains suboptimal, partly attributed to insufficient T cell infiltration into the tumor site. A promising strategy involves directing T cells towards the tumor utilizing tumor-specific chemokine receptors. MATERIALS AND METHODS: We analyzed chemokine receptor expression in activated T cells and chemokine expression in breast and lung cancer using The Cancer Genome Atlas (TCGA) data. Subsequently, we generated 1G4 T cell receptor-engineered T (TCR-T) cells with CCR10 and performed in vitro and in vivo efficacy tests. RESULTS: CCR10 exhibited insufficient expression in various human T cells. Analysis of TCGA RNA sequencing data revealed elevated expression of the chemokine CCL28, the corresponding chemokine for CCR10, in breast and lung cancer. Consequently, we generated CCR10-1G4 TCR-T cells. CCR10-1G4 dual expressing TCR-T cells exhibited comparable cellular cytotoxicity but increased mobility compared to 1G4 TCR-T cells in vitro. Furthermore, injecting CCR10-1G4 dual expressing TCR-T cells into a xenograft tumor model demonstrated enhanced in vivo trafficking and a greater reduction of tumor burden. CONCLUSION: This study highlights the potential of CCR10 for developing efficient adoptive T-cell treatments targeting solid tumors.


Assuntos
Neoplasias Pulmonares , Linfócitos T , Humanos , Linfócitos T/metabolismo , Quimiocinas/metabolismo , Receptores de Quimiocinas , Imunoterapia , Neoplasias Pulmonares/terapia , Receptores de Antígenos de Linfócitos T/genética , Receptores CCR10/genética , Receptores CCR10/metabolismo
15.
Front Cell Dev Biol ; 10: 986454, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325364

RESUMO

Mitochondria are dynamic organelles that undergo regulated microtubule- and actin-mediated trafficking to meet local energy and metabolic needs. Mitochondrial trafficking may be particularly critical in large cells such as eggs and early embryos where spindle formation and polar body extrusion occur in specific regions of the cytoplasm. To investigate the role of mitochondrial distribution in oocytes we have targeted the mitochondrial membrane protein, MIRO1, which couples mitochondria to the motor protein-TRAK complex. Oocyte-specific deletion of MIRO1 leads to the formation of large aggregates of mitochondria in perinuclear and cortical compartments. Mitochondria remain capable of long-range trafficking during maturation, indicating redundancy in the mechanisms coupling mitochondria to motor proteins. Polar body extrusion in the absence of MIRO1 was reduced by approximately 20%. In MIRO1-deleted zygotes, mitochondria showed increased accumulation around the pronuclei but this did not affect mitochondrial distribution to daughter blastomeres. In vitro development of parthenogenetic embryos was also reduced, although no differences were found in the fertility of oocyte-specific Miro1 KO mice. These findings demonstrate MIRO1 acts as a mitochondrial adaptor, setting mitochondrial distribution in oocytes and early embryos, and disrupting this process compromises in vitro oocyte maturation and embryo development.

16.
Sci Adv ; 8(24): eabl8070, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35704569

RESUMO

Eggs contain about 200,000 mitochondria that generate adenosine triphosphate and metabolites essential for oocyte development. Mitochondria also integrate metabolism and transcription via metabolites that regulate epigenetic modifiers, but there is no direct evidence linking oocyte mitochondrial function to the maternal epigenome and subsequent embryo development. Here, we have disrupted oocyte mitochondrial function via deletion of the mitochondrial fission factor Drp1. Fission-deficient oocytes exhibit a high frequency of failure in peri- and postimplantation development. This is associated with altered mitochondrial function, changes in the oocyte transcriptome and proteome, altered subcortical maternal complex, and a decrease in oocyte DNA methylation and H3K27me3. Transplanting pronuclei of fertilized Drp1 knockout oocytes to normal ooplasm fails to rescue embryonic lethality. We conclude that mitochondrial function plays a role in establishing the maternal epigenome, with serious consequences for embryo development.


Assuntos
Desenvolvimento Embrionário , Oócitos , Citoplasma/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Desenvolvimento Embrionário/genética , Feminino , Humanos , Mitocôndrias/metabolismo , Oócitos/metabolismo , Gravidez
17.
Cells ; 11(9)2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35563830

RESUMO

Endothelial cells (ECs), lining blood vessels' lumen, play an essential role in regulating vascular functions. As multifunctional components of vascular structures, pluripotent stem cells (PSCs) are the promising source for potential therapeutic applications in various vascular diseases. Our laboratory has previously established an approach for differentiating porcine epiblast stem cells (pEpiSCs) into ECs, representing an alternative and potentially superior cell source. However, the condition of pEpiSCs-derived ECs growth has yet to be determined, and whether pEpiSCs differentiate into functional ECs remained unclear. Changes in morphology, proliferation and functional endothelial marker were assessed in pEpiSCs-derived ECs in vitro. pEpiSCs-derived ECs were subjected to magnetic-activated cell sorting (MACS) to collect CD-31+ of ECs. We found that sorted ECs showed the highest proliferation rate in differentiation media in primary culture and M199 media in the subculture. Next, sorted ECs were examined for their ability to act as typical vascular ECs through capillary-like structure formation assay, Dil-acetylated low-density lipoprotein (Dil-Ac-LDL) uptake, and three-dimensional spheroid sprouting. Consequently, pEpiSCs-derived ECs function as typical vascular ECs, indicating that pEpiSC-derived ECs might be used to develop cell therapeutics for vascular disease.


Assuntos
Células Endoteliais , Células-Tronco Pluripotentes , Animais , Diferenciação Celular , Proliferação de Células , Camadas Germinativas , Suínos
18.
Opt Express ; 19(5): 4113-9, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21369240

RESUMO

We showed experimentally interference could be occurred between incoherent lights in a double-Λ lambda transition implemented with rubidium atomic vapor. Switching of probe transmission was controlled by the phases of two` independent probe lasers with low light intensity. More than 70% of the probe transmission could be switched by ultra-weak incoherent field. We suggested optically cryptic information could be delivered by the phase-controlled switching with incoherent fields in a double-Λ system.


Assuntos
Interferometria/métodos , Refratometria/métodos , Rubídio/química , Processamento de Sinais Assistido por Computador , Luz , Espalhamento de Radiação
19.
Cell Reprogram ; 23(2): 89-98, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33861642

RESUMO

Pluripotent stem cells (PSCs) have the ability of self-renewal that can retain the characteristics of the mother cell, and of pluripotency that can differentiate into several body types. PSCs typically include embryonic stem cells (ESCs) derived from the inner cell mass of the preimplantation embryo, and epiblast stem cells (EpiSCs) derived from the epiblast of postimplantation embryo. Although PSCs are able to be used by differentiation into endothelial cells as a potential treatment for vascular diseases, human ESCs and induced PSCs (iPSCs) are followed by ethical and safety issues. Pigs are anatomically and physiologically similar to humans. Therefore, the goal of this study was to establish an efficient protocol that differentiates porcine EpiSCs (pEpiSCs) into the endothelial cells for applying the treatment of human vascular diseases. As a result, alkaline phosphatase (AP)-negative (-) pEpiSCs cultured in endothelial cell growth basal medium-2 (EBM-2) differentiation medium in association with 50 ng/mL of vascular endothelial growth factor (VEGF) for 8 days were changed morphologically like the feature of endothelial cells, and expression of pluripotency-associated markers (OCT-3/4, NANOG, SOX2, and C-MYC) in porcine differentiated cells was significantly decreased (p < 0.05). Additionally, when pEpiSCs were cultured in EBM-2 + 50 ng/mL of VEGF, porcine differentiated cells represented a common endothelial cell marker positive (CD31+) but monocytes and lymphocytes marker negative (CD45-). Therefore, these results indicated that pEpiSCs cultured in EBM-2 + 50 ng/mL of VEGF culture condition were efficiently differentiated into endothelial cells for the treatment of blood vessel diseases.


Assuntos
Diferenciação Celular , Desenvolvimento Embrionário , Células-Tronco Embrionárias/citologia , Células Endoteliais/citologia , Camadas Germinativas/citologia , Células-Tronco Pluripotentes/citologia , Animais , Células-Tronco Embrionárias/metabolismo , Células Endoteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camadas Germinativas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Suínos
20.
Opt Express ; 18(19): 19755-60, 2010 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-20940870

RESUMO

Most optical fibers are designed for forward firing i.e. the light is emitted at the distal end along the optical axis of the fiber. In some applications such as the laser surgery and laser scanners, side firing of the optical fiber is required. In this paper, we present the microstructuring of an optical fiber tip using the femtosecond laser and an arc discharging process for the multidirectional firing of the beam. The distal end of the optical fiber with diameter of 125 µm was machined into a conical structure using a femtosecond laser. The surface of the machined tip was exposed to the arc discharge using a fiber splicer. The arc discharge leads to the melting and re-solidification of the fiber tip. This results in a smoothing of laser-induced conical microstructure at the tip of the fiber. We were able to demonstrate the multidirectional (circumferential) emission of the light from the developed fiber tip.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Lasers , Iluminação/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA