Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Chem Pharm Bull (Tokyo) ; 72(5): 498-506, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38735699

RESUMO

Using (S)-decursinol isolated from root of Angelica gigas Nakai (AGN), we semi-synthesized and evaluated a series of both enantiomerically pure decursin derivatives for their antiproliferative activities against A549 human lung cancer cells. All synthesized compounds showed a broad spectrum of inhibitory activities against the growth of A549 cells. Especially, compound (S)-2d with (E)-(furan-3-yl)acryloyl group showed the most potent activity (IC50: 14.03 µM) against A549 cancer cells as compared with the reference compound, decursin (IC50: 43.55 µM) and its enantiomer, (R)-2d (IC50: 151.59 µM). Western blotting assays indicated that (S)-2d more strongly inhibited Janus kinase 1 (JAK1) and signal transducer and activator of transcription activation 3 (STAT3) phosphorylation than decursin in a dose-dependent manner, while having no effect on CXCR7 overexpression and total STAT3 level. In addition, (S)-2d induced cell cycle arrest at G1 phase and subsequent apoptotic cell death in A549 cancer cells. Our combined analysis of molecular docking studies and biological data suggests that the inhibition of JAK1 with (S)-2d resulted in loss of STAT3 phosphorylation and inhibition of cell growth in A549 cancer cells. These overall results strongly suggest that (S)-2d (MRC-D-004) as a novel JAK1 inhibitor may have therapeutic potential in the treatment of A549 human lung cancers by targeting the JAK1/STAT3 signaling pathway.


Assuntos
Apoptose , Benzopiranos , Butiratos , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Fator de Transcrição STAT3 , Humanos , Proliferação de Células/efeitos dos fármacos , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Benzopiranos/farmacologia , Benzopiranos/química , Benzopiranos/síntese química , Butiratos/farmacologia , Butiratos/química , Butiratos/síntese química , Apoptose/efeitos dos fármacos , Células A549 , Estereoisomerismo , Relação Dose-Resposta a Droga , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Estrutura-Atividade , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 1/metabolismo , Estrutura Molecular , Angelica/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/química
2.
Molecules ; 29(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38257267

RESUMO

In our search for bioactive components, various chromatographic separations of the organic fractions from Filipendula glaberrima leaves led to the isolation of a new ellagitannin and a triterpenoid, along with 26 known compounds. The structures of the isolates were determined based on their spectroscopic properties and chemical evidence, which were then evaluated for their antioxidant activities, inhibitory activities on 3-hydroxy-3-methylglutaryl-coenzyme A reductase, and foam cell formation in THP-1 cells to prevent atherosclerosis. Rugosin B methyl ester (1) showed the best HMG-CoA reductase inhibition and significantly reduced ox-low-density lipoprotein-induced THP-1 macrophage-derived foam cell formation at 25 µM. In addition, no cytotoxicity was observed in THP-1 cells at 50 µg/mL of all extracts in the macrophage foam cell formation assay. Therefore, F. glaberrima extract containing 1 is promising in the development of dietary supplements due to its potential behavior as a novel source of nutrients for preventing and treating atherosclerosis.


Assuntos
Acil Coenzima A , Aterosclerose , Filipendula , Células Espumosas , Antioxidantes/farmacologia , Hidroximetilglutaril-CoA-Redutases NADP-Dependentes , Macrófagos , Aterosclerose/tratamento farmacológico , Folhas de Planta
3.
J Cell Physiol ; 237(8): 3381-3393, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35696529

RESUMO

Cytoplasmic serine/threonine Pim kinases have emerged as important modulators of immune regulation and oncology. However, their regulatory roles in bone remodeling remain obscure. Here, we aimed to determine the roles of Pim kinases in periodontal disease (PD), focusing on the regulation of osteoclastogenesis and bone resorptive activity. We investigated Pim kinases expression in PD by analyzing data from the online Gene Expression Omnibus database and using ligature-induced periodontitis mouse model. The expression of Pim kinases during receptor activator of nuclear factor kB ligand (RANKL)-induced osteoclastogenesis was assessed in mouse bone marrow-derived macrophages (BMMs) using reverse transcription polymerase chain reaction. Osteoclast differentiation and bone resorption activity were respectively verified by tartrate-resistant acid phosphatase staining and dentin disc-based bone resorption assays. We silenced and overexpressed Pim-2 using small interfering RNA (siRNA) and retroviral vector, respectively, to investigate the molecular mechanisms underlying Pim-2 regulation in RANKL-induced osteoclastogenesis and bone resorption activity. Upregulated expression of Pim-2 was observed in both patients with PD and periodontitis-affected mouse gingival tissues. siRNA-mediated silencing of Pim-2 in BMMs diminished RANKL-induced resorptive activity without affecting osteoclastogenesis. Moreover, RANKL-triggered stimulation of a3 isoform, which is a subunit of vacuolar-type ATPase, was selectively attenuated in BMMs on silencing Pim-2. The overexpression of Pim-2 with a retroviral vector stimulated the a3 subunit, thus inducing bone resorption activity. Taken together, these results suggest that Pim-2 acts as a major modulator of osteoclastic activity by regulating a3 isoform expression in PD.


Assuntos
Reabsorção Óssea , Doenças Periodontais , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas , ATPases Vacuolares Próton-Translocadoras , Animais , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Diferenciação Celular , Inativação Gênica , Camundongos , Osteoclastos/metabolismo , Doenças Periodontais/genética , Doenças Periodontais/metabolismo , Periodontite/genética , Periodontite/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Ligante RANK/metabolismo , RNA Interferente Pequeno/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
4.
J Virol ; 95(3)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33177196

RESUMO

PP7 is a leviphage, with a single-stranded RNA genome, that infects Pseudomonas aeruginosa PAO1. A reverse genetic system for PP7 was previously created by using reverse-transcribed cDNA (PP7O) from a virion-derived RNA genome. Here, we have found that the PP7O cDNA contained 20 nucleotide differences from the PP7 genome sequence deposited in the database. We created another reverse genetic system exploiting chemically synthesized cDNA (PP7S) based on the database sequence. Unlike PP7O, which yielded infectious PP7 virions, PP7S-derived particles were incapable of plaque formation on PAO1 cells, which was restored in the PAO1 cells expressing the maturation protein (MP) from PP7O Using this reverse genetic system, we revealed two amino acid residues involved in the known roles of MP (i.e., adsorption and genome replication), fortuitously providing a lesson that the viral RNA genome sequencing needs functional verification, possibly by a reverse genetic system.IMPORTANCE The biological significance of RNA phages has been largely ignored, ironically, because few studies have focused on RNA phages. As an initial attempt to properly represent RNA phages in the phageome, we previously created, by using reverse-transcribed cDNA, a reverse genetic system for the small RNA phage PP7, which infects the opportunistic human pathogen Pseudomonas aeruginosa We report another system by using chemically synthesized cDNA based on the database genome that has 20 nucleotide differences from the previous cDNA. Investigation of those cDNA-derived phage virions revealed that two amino acids of the maturation protein are crucial for the normal phage lifecycle at different steps. Our study provides insight into the molecular basis for the RNA phage lifecycle and a lesson that the RNA genome sequencing needs to be carefully validated by cDNA-based phage assembly systems.


Assuntos
DNA Complementar/metabolismo , Fagos de Pseudomonas/fisiologia , Pseudomonas aeruginosa/virologia , RNA Viral/metabolismo , Proteínas Virais/metabolismo , DNA Complementar/genética , Humanos , Conformação de Ácido Nucleico , RNA Viral/genética , Proteínas Virais/genética
5.
Bioorg Med Chem Lett ; 74: 128920, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35931244

RESUMO

mPGES-1 is found to be up-regulated in the dopaminergic neurons of the substantia nigra pars compacta (SNpc) of postmortem brain tissue from Parkinson's disease (PD) patients and neurotoxin 6-hydroxydopamine (6-OHDA)-induced PD mice. Since the genetic deletion of mPGES-1 abolished 6-OHDA-induced PGE2 production and 6-OHDA-induced dopaminergic neurodegeneration in vitro and in vivo models, mPGES-1 enzyme has the potential to be an important target for PD therapy. In the present work, we investigated whether a small organic molecule as mPGES-1 inhibitor could exhibit the neuroprotective effects against 6-OHDA-induced neurotoxicity in in vitro and in vivo models. For this research goal, a new series of arylsulfonyl hydrazide derivatives was prepared and investigated whether these compounds may protect neurons against 6-OHDA-induced neurotoxicity in both in vitro and in vivo studies. Among them, compound 7s (MPO-0144) as a mPGES-1 inhibitor (PGE2 IC50 = 41.77 nM; mPGES-1 IC50 = 1.16 nM) exhibited a potent neuroprotection (ED50 = 3.0 nM) against 6-OHDA-induced in PC12 cells without its own neurotoxicity (IC50 = >10 µM). In a 6-OHDA-induced mouse model of PD, administration of compound 7s (1 mg/kg/day, for 7 days, i.p.) ameliorated motor impairments and dopaminergic neuronal damage. These significant biological effects of compound 7s provided the first pharmacological evidence that mPGES-1 inhibitor could be a promising therapeutic agent for PD patients.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos , Camundongos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Oxidopamina/farmacologia , Doença de Parkinson/tratamento farmacológico , Prostaglandinas E/farmacologia , Prostaglandinas E/uso terapêutico , Ratos
6.
Lasers Med Sci ; 37(2): 1049-1059, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34142255

RESUMO

The general bone anabolic effect of photobiomodulation (PBM) is largely accepted. As a result, PBM therapy is expected to be beneficial in the medical fields of dentistry and bone healing. However, most of the previous in vitro studies on PBM and bone metabolism were performed with single-cell cultures of osteoclast-lineage cells or osteoblast-lineage cells. In the present study, the bone-modulating effects of PBM were evaluated in an in vitro osteoblast/osteoclast co-culture system. Mouse bone marrow-derived macrophages (BMMs) and mouse calvarial pre-osteoblasts cells were purified and used as precursor cells for osteoclasts and osteoblasts, respectively. The PBM effects on single-cell culture of osteoclasts or osteoblasts as well as co-culture were examined by 1.2 J/cm2 low-level Ga-Al-As laser (λ = 808 ± 3 nm, 80 mW, and 80 mA; spot size, 1cm2; NDLux, Seoul, Korea) irradiation for 30 s at daily intervals throughout culture period. At the end of culture, the osteoclast differentiation and osteoblast differentiation were assessed by TRAP staining and ALP staining, respectively. The expressions of osteoclastogenic cytokines were evaluated by RT-PCR and Western blot analyses. Under the single-cell culture condition, PBM enhanced osteoblast differentiation but had minor effects on osteoclast differentiation. However, in the co-culture condition, its osteoblastogenic effect was maintained, and osteoclast differentiation was substantially reduced. Subsequent RT-PCR analyses and western blot results revealed marked reduction in receptor activator of NF-κB ligand (RANKL) expression and elevation in osteoprotegerin (OPG) expression by PBM in co-cultured cells. More importantly, these alterations in RANKL/OPG levels were not observed under the single-cell culture conditions. Our results highlight the different effects of PBM on bone cells based on culture conditions. Further, our findings suggest the indirect anti-osteoclastogenic effect of PBM, which is accompanied by a decrease in RANKL expression and an increase in OPG expression.


Assuntos
Osteoblastos , Osteoclastos , Animais , Remodelação Óssea , Diferenciação Celular , Técnicas de Cocultura , Camundongos , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo
7.
J Craniofac Surg ; 33(2): 620-623, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34519713

RESUMO

ABSTRACT: This study aimed to identify the preferred range of lower lip-chin prominence angles in the Korean population and evaluate the effect of the individual lower lip-chin prominence angle on perceptions of esthetic chin profile.Chin prominence silhouettes were used to assess the lower lip-chin prominence preference. The observers randomly categorized each image as (1) normal, (2) slightly abnormal but not requiring surgical correction, and (3) abnormal and requiring surgery. Individual lower-chin prominence angles of all observers were analyzed using standardized clinical photographs.The normal range of lower lip-chin prominence angle is 0° to 25°; socially acceptable range is 0° to -10°, 25° to 40°; range needing surgery is -10° to -30° and 40° to 45°. Women are more tolerant to chin protrusion. A protrusive chin is more acceptable in observers with retrusive chin profile.Skeletal Class II profile is more acceptable than skeletal Class III in the Korean population. The individual lower-chin prominence angle could affect perception of desired surgery. These findings indicate that patient-specific treatment planning is important in achieving satisfaction in chin surgery.


Assuntos
Má Oclusão Classe III de Angle , Má Oclusão , Cefalometria/métodos , Ossos Faciais , Feminino , Humanos , Lábio/anatomia & histologia , Percepção
8.
Bioorg Med Chem Lett ; 41: 127992, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33775835

RESUMO

Our previous research showed that N-carboxy-phenylsulfonyl hydrazide (scaffold A) could reduce LPS-stimulated PGE2 levels in RAW 264.7 macrophage cells by an inhibition of mPGES-1 enzyme. However, a number of scaffold A derivatives showed the drawbacks such as the formation of regioisomers and poor liver metabolic stability. In order to overcome these synthetic and metabolic problems, therefore, we decided to replace N-carboxy-phenylsulfonyl hydrazide (scaffold A) with N-carboxy-phenylsulfonamide (scaffold B) or N-amido-phenylsulfonamide frameworks (scaffold C) as a bioisosteric replacement. Among them, MPO-0186 (scaffold C) inhibited the production of PGE2 (IC50: 0.24 µM) in A549 cells via inhibition of mPGES-1 (IC50: 0.49 µM in a cell-free assay) and was found to be approximately 9- and 8-fold more potent than MK-886 as a reference inhibitor, respectively. A molecular docking study theoretically suggests that MPO-0186 could inhibit PGE2 production by blocking the PGH2 binding site of mPGES-1 enzyme. Furthermore, MPO-0186 demonstrated good liver metabolic stability and no significant inhibition observed in clinically relevant CYP isoforms except CYP2C19. This result provides a potential starting point for the development of selective and potent mPGES-1 inhibitor with a novel scaffold.


Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Prostaglandina-E Sintases/antagonistas & inibidores , Sulfonamidas/farmacologia , Células A549 , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Fígado/química , Fígado/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Prostaglandina-E Sintases/metabolismo , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química
9.
Sensors (Basel) ; 21(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466398

RESUMO

Typical AR methods have generic problems such as visual mismatching, incorrect occlusions, and limited augmentation due to the inability to estimate depth from AR images and attaching the AR markers onto physical objects, which prevents the industrial worker from conducting manufacturing tasks effectively. This paper proposes a hybrid approach to industrial AR for complementing existing AR methods using deep learning-based facility segmentation and depth prediction without AR markers and a depth camera. First, the outlines of physical objects are extracted by applying a deep learning-based instance segmentation method to the RGB image acquired from the AR camera. Simultaneously, a depth prediction method is applied to the AR image to estimate the depth map as a 3D point cloud for the detected object. Based on the segmented 3D point cloud data, 3D spatial relationships among the physical objects are calculated, which can assist in solving the visual mismatch and occlusion problems properly. In addition, it can deal with a dynamically operating or a moving facility, such as a robot-the conventional AR cannot do so. For these reasons, the proposed approach can be utilized as a hybrid or complementing function to existing AR methods, since it can be activated whenever the industrial worker requires handing of visual mismatches or occlusions. Quantitative and qualitative analyses verify the advantage of the proposed approach compared with existing AR methods. Some case studies also prove that the proposed method can be applied not only to manufacturing but also to other fields. These studies confirm the scalability, effectiveness, and originality of this proposed approach.

10.
Dent Traumatol ; 37(3): 430-435, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33421357

RESUMO

BACKGROUND/AIMS: Teeth in a jaw fracture line, because of the presence of the periodontal ligament, may communicate with the oral cavity. There are no guidelines for the management of teeth in mandibular fracture lines. The aim of this study was to investigate the factors related to dental problems with teeth involved in mandibular fracture lines and to determine the best treatment option. MATERIAL AND METHODS: This retrospective study was based on the medical and radiographic records of patients with mandibular fractures. The relationships among the patient's age, gender, smoking history, amount of bony displacement, surgery, trauma-surgery period, apical involvement, tooth mobility, and periodontal status were investigated. Group comparisons were performed using the chi-squared test, Fisher's exact test, and Mann-Whitney U-test. RESULT: A total of 238 patients (247 fracture lines) with mandibular fractures including a tooth in the line of the fracture were examined. Post-operative dental complications occurred in 42 cases (17.0%). Extraction of related teeth occurred in 34 cases (80.9%) compared to eight cases (19.0%) related to root canal therapy. This study defined "dental problem" as "a case with a tooth extracted or endodontically treated after trauma." The variables associated with an increased risk of dental problems were the amount of bony displacement (p < .01), tooth mobility (p < .01), and pre-existing marginal alveolar bone loss (p = .027). CONCLUSION: The prognosis of teeth in mandibular fracture lines was related to tooth mobility, periodontal state, and the amount of bony displacement.


Assuntos
Fraturas Mandibulares , Fraturas dos Dentes , Mobilidade Dentária , Dente , Humanos , Fraturas Mandibulares/complicações , Fraturas Mandibulares/diagnóstico por imagem , Prognóstico , Estudos Retrospectivos
11.
Bioorg Med Chem ; 28(11): 115491, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32327350

RESUMO

In our previous work, a series of 2-amino-3,4-dihydroquinazoline derivativesusing an electron acceptor group was reported to be potent T-type calcium channel blockers and exhibit strong cytotoxic effects against various cancerous cell lines. To investigate the role of the guanidine moiety in the 2-amino-3,4-dihydroquinazoline scaffold as a pharmacophore for dual biological activity, a new series of 2-thio-3,4-dihydroquniazoline derivatives using an electron donor group at the C2-position was synthesized and evaluated for T-type calcium channel blocking activity and cytotoxic effects against two human cancerous cell lines (lung cancer A549 and colon cancer HCT-116). Among them, compound 6g showed potent inhibition of Cav3.2 currents (83% inhibition) at 10 µM concentrations. The compound also exhibited IC50 values of 5.0 and 6.4 µM against A549 and HCT-116 cell lines, respectively, which are comparable to the parental lead compound KYS05090. These results indicate that the isothiourea moiety similar to the guanidine moiety of 2-amino-3,4-dihydroquinazoline derivatives may be an essential pharmacophore for the desired biological activities. Therefore, our preliminary work can provide the opportunity to expand a chemical repertoire to improve affinity and selectivity for T-type calcium channels.


Assuntos
Antineoplásicos/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/metabolismo , Quinazolinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Bloqueadores dos Canais de Cálcio/síntese química , Bloqueadores dos Canais de Cálcio/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Quinazolinas/síntese química , Quinazolinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
12.
Prostaglandins Other Lipid Mediat ; 144: 106347, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31229523

RESUMO

We previously reported the strong inhibitory potency of N-phenyl-N'-(4- benzyloxyphenoxycarbonyl)-4-chlorophenylsulfonyl hydrazide (PBCH) on lipopolysaccharide (LPS)-induced prostaglandin E2 (PGE2) production in macrophages. Herein, we characterized PBCH as a microsomal prostaglandin E synthase-1 (mPGES-1) inhibitor and evaluated its anti-inflammatory effects using in vivo experimental models. PBCH inhibited PGE2 production in various activated cells in addition to inhibiting the mPGES-1 activity. In the ear edema and paw edema rat models, PBCH significantly reduced ear thickness and paw swelling, respectively. Besides, in adjuvant-induced arthritis (AIA) rat model, PBCH decreased paw swelling, plasma rheumatoid factor (RF), and receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin (OPG) ratio. Furthermore, while PBCH reduced the plasma prostaglandin E metabolite (PGEM) levels, it did not affect the plasma levels of prostacyclin (PGI2) and thromboxane A2 (TXA2). Our data suggest that PBCH downregulates PGE2 production by interfering with the mPGES-1 activity, thus reducing edema and arthritis in rat models.


Assuntos
Anti-Inflamatórios/farmacologia , Dinoprostona/metabolismo , Regulação para Baixo/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Hidrazinas/farmacologia , Prostaglandina-E Sintases/antagonistas & inibidores , Tiazóis/farmacologia , Células A549 , Animais , Anti-Inflamatórios/uso terapêutico , Dinoprostona/biossíntese , Modelos Animais de Doenças , Inibidores Enzimáticos/uso terapêutico , Humanos , Hidrazinas/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Camundongos , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Tiazóis/uso terapêutico
13.
Int J Mol Sci ; 20(6)2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30909508

RESUMO

Bisphosphonates are one of the most widely used synthetic pyrophosphate analogues for the treatment of bone resorbing diseases such as osteoporosis, multiple myeloma, and bone metastases. Although the therapeutic usefulness of bisphosphonates mainly depends on their anti-osteoclastogenic effect, a severe side-effect of bisphosphonates called bisphosphonate-related osteonecrosis of the jaw (BRONJ) could not be explained by the anti-osteoclastogenic effect of bisphosphonates. In the present study, we have evaluated the changes in osteoclastogenesis- or osteoblastogenesis-supporting activities of osteocytes induced by bisphosphonates. Zoledronate, a nitrogen-containing bisphosphonate, markedly increased both the receptor activator of nuclear factor kB ligand (RANKL) as well as sclerostin in osteocyte-like MLO-Y4 cells, which were functionally revalidated by osteoclast/osteoblast generating activities of the conditioned medium obtained from zoledronate-treated MLO-Y4 cells. Of note, the zoledronate treatment-induced upregulation of the RANKL expression was mediated by autocrine interleukin-6 (IL-6) and subsequent activation of the signal transducer and activator of transcription 3 (STAT3) pathway. These results were evidenced by the blunted RANKL expression in the presence of a Janus activated kinase (JAK2)/STAT3 inhibitor, AG490. Also, the osteoclastogenesis-supporting activity was significantly decreased in zoledronate-treated MLO-Y4 cells in the presence of IL-6 neutralizing IgG compared to that of the control IgG. Thus, our results show previously unanticipated effects of anti-bone resorptive bisphosphonate and suggest a potential clinical importance of osteocytes in BRONJ development.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Interleucina-6/metabolismo , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteócitos/metabolismo , Ligante RANK/metabolismo , Ácido Zoledrônico/farmacologia , Animais , Anticorpos Monoclonais/farmacologia , Biomarcadores , Comunicação Celular , Linhagem Celular , Expressão Gênica , Interleucina-6/antagonistas & inibidores , Interleucina-6/genética , Janus Quinase 2/metabolismo , Camundongos , Modelos Biológicos , Osteogênese/efeitos dos fármacos , Ligante RANK/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
Nutr Cancer ; 70(1): 125-135, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29148840

RESUMO

OSCC is the most common malignant cancer of the head and neck. EMT is an essential cellular process critical to the morphogenesis and homeostasis of solid tissues. It is also involved in the initial stage of cancer metastasis and invasion in which cells lose epithelial characteristics. While cancer therapy protocols such as surgery, radiation, and chemotherapy are effective and useful, the drug tolerance and toxicity of OSCC patients remain a problem. Resveratrol is mainly produced in red grape skin and exhibits anti-oxidative, anti-inflammatory, anti-proliferative, and anti-cancer properties. This study was undertaken to investigate the underlying mechanisms giving rise to the induction of apoptosis by resveratrol in the human tongue squamous cell carcinoma cell line. Resveratrol treatment resulted in a time- and dose-dependent decrease in cell viability and increased the apoptotic cell ratio in CAL-27, SCC15, and SCC25 cells. Resveratrol treatment of CAL-27 cells showed that several lines of apoptotic manifestation and decreased cell migration, invasion, and EMT-inducing transcription factor. Taken together, our findings demonstrate the inhibitory effect of resveratrol in human OSCC cells via the mitochondrial pathway and that resveratrol is able to inhibit cell invasion and migration by inhibiting the EMT-inducing transcription factors.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Resveratrol/farmacologia , Neoplasias da Língua/tratamento farmacológico , Antineoplásicos Fitogênicos/farmacologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Caspases/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neoplasias da Língua/metabolismo , Neoplasias da Língua/patologia
15.
J Enzyme Inhib Med Chem ; 33(1): 1460-1471, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30231778

RESUMO

The treatment of neuropathic pain is one of the urgent unmet medical needs and T-type calcium channels are promising therapeutic targets for neuropathic pain. Several potent T-type channel inhibitors showed promising in vivo efficacy in neuropathic pain animal models and are being investigated in clinical trials. Herein we report development of novel pyrrolidine-based T-type calcium channel inhibitors by pharmacophore mapping and structural hybridisation followed by evaluation of their Cav3.1 and Cav3.2 channel inhibitory activities. Among potent inhibitors against both Cav3.1 and Cav3.2 channels, a promising compound 20n based on in vitro ADME properties displayed satisfactory plasma and brain exposure in rats according to in vivo pharmacokinetic studies. We further demonstrated that 20n effectively improved the symptoms of neuropathic pain in both SNL and STZ neuropathic pain animal models, suggesting modulation of T-type calcium channels can be a promising therapeutic strategy for the treatment of neuropathic pain.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/metabolismo , Neuralgia/tratamento farmacológico , Pirrolidinas/farmacologia , Animais , Bloqueadores dos Canais de Cálcio/síntese química , Bloqueadores dos Canais de Cálcio/química , Modelos Animais de Doenças , Células HEK293 , Humanos , Ligadura , Masculino , Camundongos , Camundongos Knockout , Estrutura Molecular , Neuralgia/induzido quimicamente , Neuralgia/metabolismo , Pirrolidinas/síntese química , Pirrolidinas/química , Ratos , Ratos Sprague-Dawley , Nervos Espinhais/cirurgia , Estreptozocina
16.
Bioorg Med Chem Lett ; 27(5): 1179-1185, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28189420

RESUMO

A series of 3,4-dihydroquinazoline derivatives consisting of the selected compounds from our chemical library on the diversity basis and the new synthetic compounds were in vitro tested for their inhibitory activities for both acetylcholinesterase (AChE, from electric eel) and butyrylcholinesterase (BChE, from equine serum) enzymes. It was discovered that most of the compounds displayed weak AChE and strong BuChE inhibitory activities. In particular, compound 8b and 8d were the most active compounds in the series against BChE with IC50 values of 45nM and 62nM, as well as 146- and 161-fold higher affinity to BChE, respectively. To understand the excellent activity of these compounds, molecular docking simulations were performed to get better insights into the mechanism of binding of 3,4-dihydroquinazoline derivatives. As expected, compound 8b and 8d bind to both catalytic anionic site (CAS) and peripheral site (PS) of BChE with better interaction energy values than AChE, in agreement with our experimental data. Furthermore, the non-competitive/mixed-type inhibitions of both compounds further confirmed their dual binding nature in kinetic studies.


Assuntos
Inibidores da Colinesterase/farmacologia , Quinazolinas/farmacologia , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/uso terapêutico , Humanos , Simulação de Acoplamento Molecular , Quinazolinas/uso terapêutico
17.
Bioorg Med Chem Lett ; 27(23): 5245-5251, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29102229

RESUMO

Seeds of Carthamus tinctorius L. (Compositae) have been used in Korean traditional medicines for the treatment of cardiovascular and bone diseases. In this study, we investigated the anti-inflammatory effects of known serotonin derivatives (1-9) isolated from the ethyl acetate (EtOAc) soluble fraction from the seeds of C. tinctorius. Compound 2, identified as moschamine, most potently inhibited lipopolysaccharide (LPS)-induced production of prostaglandin E2 (PGE2) and nitric oxide (NO) in RAW 264.7 macrophages. Moschamine concentration-dependently inhibited LPS-induced PGE2 and NO production in RAW 264.7 macrophages. Consistent with these findings, moschamine suppressed the protein and mRNA levels of cyclooxygenase-2 (COX-2), microsomal prostaglandin E2 synthase (mPGES)-1, and inducible NO synthase (iNOS), interleukin (IL)-6, and IL-1ß. In addition, pretreatment of moschamine significantly inhibited LPS-stimulated the transcriptional activity of activator protein-1 (AP-1) and the phosphorylation of signal transducer and activator of transcription (STAT)1/3 in RAW 264.7 macrophages. Moreover, moschamine inhibited LPS-induced the phosphorylation of p38 mitogen-activated protein kinase (p38) and extracellular signal-regulated kinase (ERK), but it had no effect on c-Jun N-terminal kinase (JNK). These results suggest that the mechanism of anti-inflammatory activity of moschamine is associated with the downregulation of COX-2, mPGES-1, iNOS, IL-6, and IL-1ß expression through the suppression of AP-1 and STAT1/3 activation in LPS-induced RAW 264.7 macrophages.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Carthamus tinctorius/química , Mediadores da Inflamação/antagonistas & inibidores , Lipopolissacarídeos/antagonistas & inibidores , Macrófagos/efeitos dos fármacos , Serotonina/análogos & derivados , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/isolamento & purificação , Relação Dose-Resposta a Droga , Mediadores da Inflamação/farmacologia , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Camundongos , Estrutura Molecular , Células RAW 264.7 , Fator de Transcrição STAT1/antagonistas & inibidores , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Serotonina/química , Serotonina/isolamento & purificação , Serotonina/farmacologia , Relação Estrutura-Atividade , Fator de Transcrição AP-1/antagonistas & inibidores , Fator de Transcrição AP-1/metabolismo
18.
J Comput Aided Mol Des ; 31(10): 929-941, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28913661

RESUMO

Cyclophilin D (CypD) is a mitochondria-specific cyclophilin that is known to play a pivotal role in the formation of the mitochondrial permeability transition pore (mPTP).The formation and opening of the mPTP disrupt mitochondrial homeostasis, cause mitochondrial dysfunction and eventually lead to cell death. Several recent studies have found that CypD promotes the formation of the mPTP upon binding to ß amyloid (Aß) peptides inside brain mitochondria, suggesting that neuronal CypD has a potential to be a promising therapeutic target for Alzheimer's disease (AD). In this study, we generated an energy-based pharmacophore model by using the crystal structure of CypD-cyclosporine A (CsA) complex and performed virtual screening of ChemDiv database, which yielded forty-five potential hit compounds with novel scaffolds. We further tested those compounds using mitochondrial functional assays in neuronal cells and identified fifteen compounds with excellent protective effects against Aß-induced mitochondrial dysfunction. To validate whether these effects derived from binding to CypD, we performed surface plasmon resonance (SPR)-based direct binding assays with selected compounds and discovered compound 29 was found to have the equilibrium dissociation constants (KD) value of 88.2 nM. This binding affinity value and biological activity correspond well with our predicted binding mode. We believe that this study offers new insights into the rational design of small molecule CypD inhibitors, and provides a promising lead for future therapeutic development.


Assuntos
Ciclofilinas/antagonistas & inibidores , Ciclosporina/química , Mitocôndrias/efeitos dos fármacos , Fármacos Neuroprotetores/química , Peptídeos beta-Amiloides/química , Animais , Sítios de Ligação , Sobrevivência Celular , Peptidil-Prolil Isomerase F , Ciclofilinas/metabolismo , Ciclosporina/farmacologia , Bases de Dados de Produtos Farmacêuticos , Células HT29 , Humanos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/farmacologia , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
19.
Bioorg Med Chem ; 25(17): 4656-4664, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28720332

RESUMO

As a bioisosteric strategy to overcome the poor metabolic stability of lead compound KYS05090S, a series of new fluoro-substituted 3,4-dihydroquinazoline derivatives was prepared and evaluated for T-type calcium channel (Cav3.2) block, cytotoxic effects and liver microsomal stability. Among them, compound 8h (KCP10068F) containing 4-fluorobenzyl amide and 4-cyclohexylphenyl ring potently blocked Cav3.2 currents (>90% inhibition) at 10µM concentration and exhibited cytotoxic effect (IC50=5.9µM) in A549 non-small cell lung cancer cells that was comparable to KYS05090S. Furthermore, 8h showed approximately a 2-fold increase in liver metabolic stability in rat and human species compared to KYS05090S. Based on these overall results, 8h (KCP10068F) may therefore represent a good backup compound for KYS05090S for further biological investigations as novel cytotoxic agent. In addition, compound 8g (KCP10067F) was found to partially protect from inflammatory pain via a blockade of Cav3.2 channels.


Assuntos
Analgésicos/síntese química , Bloqueadores dos Canais de Cálcio/síntese química , Quinazolinas/química , Quinidina/análogos & derivados , Células A549 , Analgésicos/química , Analgésicos/toxicidade , Animais , Bloqueadores dos Canais de Cálcio/química , Bloqueadores dos Canais de Cálcio/toxicidade , Canais de Cálcio Tipo T/química , Canais de Cálcio Tipo T/genética , Canais de Cálcio Tipo T/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Estabilidade de Medicamentos , Flúor/química , Células HEK293 , Humanos , Concentração Inibidora 50 , Microssomos Hepáticos/metabolismo , Técnicas de Patch-Clamp , Quinazolinas/síntese química , Quinazolinas/toxicidade , Quinidina/síntese química , Quinidina/química , Quinidina/toxicidade , Ratos
20.
Pflugers Arch ; 468(2): 193-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26354962

RESUMO

T-type channels are important contributors to the initiation and the maintenance of chronic pain states. Blocking T-type channels is therefore a possible therapeutic strategy for relieving pain. Here, we report the Cav3.2 T-type channel blocking action of a previously reported small organic molecule, KYS-05090S. This compound was able to reduce transiently expressed Cav3.2 currents with low micromolar affinity and mediated a hyperpolarizing shift in half-inactivation potential. KYS-05090S was then tested in models of acute and neuropathic pain. KYS-05090S (10 µg/10 µl delivered intrathecally) significantly reduced acute pain induced by formalin in both the tonic and inflammatory phases. Its antinociceptive effect was not observed when delivered to Cav3.2 null-mice revealing a Cav3.2-dependent mechanism. KYS-05090S also reduced neuropathic pain in a model of partial sciatic nerve injury. Those results indicate that KYS-05090S mediates a potent analgesic effect in inflammatory and neuropathic pain through T-type channel modulation, suggesting that its scaffold could be explored as a new class of analgesic compounds.


Assuntos
Dor Aguda/tratamento farmacológico , Analgésicos/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/metabolismo , Neuralgia/tratamento farmacológico , Quinazolinas/farmacologia , Potenciais de Ação , Analgésicos/uso terapêutico , Animais , Bloqueadores dos Canais de Cálcio/uso terapêutico , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nociceptividade , Quinazolinas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA