Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(49): e2208458119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36449542

RESUMO

Determining mechanism of action (MOA) is one of the biggest challenges in natural products discovery. Here, we report a comprehensive platform that uses Similarity Network Fusion (SNF) to improve MOA predictions by integrating data from the cytological profiling high-content imaging platform and the gene expression platform Functional Signature Ontology, and pairs these data with untargeted metabolomics analysis for de novo bioactive compound discovery. The predictive value of the integrative approach was assessed using a library of target-annotated small molecules as benchmarks. Using Kolmogorov-Smirnov (KS) tests to compare in-class to out-of-class similarity, we found that SNF retains the ability to identify significant in-class similarity across a diverse set of target classes, and could find target classes not detectable in either platform alone. This confirmed that integration of expression-based and image-based phenotypes can accurately report on MOA. Furthermore, we integrated untargeted metabolomics of complex natural product fractions with the SNF network to map biological signatures to specific metabolites. Three examples are presented where SNF coupled with metabolomics was used to directly functionally characterize natural products and accelerate identification of bioactive metabolites, including the discovery of the azoxy-containing biaryl compounds parkamycins A and B. Our results support SNF integration of multiple phenotypic screening approaches along with untargeted metabolomics as a powerful approach for advancing natural products drug discovery.


Assuntos
Produtos Biológicos , Produtos Biológicos/farmacologia , Metabolômica , Benchmarking , Fusão Gênica , Biblioteca Gênica
2.
Development ; 148(19)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34495316

RESUMO

Emerging evidence suggests that ribosome heterogeneity may have important functional consequences in the translation of specific mRNAs within different cell types and under various conditions. Ribosome heterogeneity comes in many forms, including post-translational modification of ribosome proteins (RPs), absence of specific RPs and inclusion of different RP paralogs. The Drosophila genome encodes two RpS5 paralogs: RpS5a and RpS5b. While RpS5a is ubiquitously expressed, RpS5b exhibits enriched expression in the reproductive system. Deletion of RpS5b results in female sterility marked by developmental arrest of egg chambers at stages 7-8, disruption of vitellogenesis and posterior follicle cell (PFC) hyperplasia. While transgenic rescue experiments suggest functional redundancy between RpS5a and RpS5b, molecular, biochemical and ribo-seq experiments indicate that RpS5b mutants display increased rRNA transcription and RP production, accompanied by increased protein synthesis. Loss of RpS5b results in microtubule-based defects and in mislocalization of Delta and Mindbomb1, leading to failure of Notch pathway activation in PFCs. Together, our results indicate that germ cell-specific expression of RpS5b promotes proper egg chamber development by ensuring the homeostasis of functional ribosomes.


Assuntos
Infertilidade/genética , Oogênese , Oogônios/metabolismo , Folículo Ovariano/metabolismo , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Feminino , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Mutação , Oogônios/citologia , Folículo Ovariano/citologia , Transporte Proteico , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais
3.
Hepatology ; 78(4): 1133-1148, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37039560

RESUMO

BACKGROUND AND AIMS: The liver is remarkably regenerative and can completely recover even when 80% of its mass is surgically removed. Identification of secreted factors that regulate liver growth would help us understand how organ size and regeneration are controlled but also provide candidate targets to promote regeneration or impair cancer growth. APPROACH AND RESULTS: To enrich for secreted factors that regulate growth control, we induced massive liver overgrowth with either YAP or MYC . Differentially expressed secreted factors were identified in these livers using transcriptomic analysis. To rank candidates by functionality, we performed in vivo CRISPR screening using the Fah knockout model of tyrosinemia. We identified secreted phosphoprotein-2 (SPP2) as a secreted factor that negatively regulates regeneration. Spp2 -deficient mice showed increased survival after acetaminophen poisoning and reduced fibrosis after repeated carbon tetrachloride injections. We examined the impact of SPP2 on bone morphogenetic protein signaling in liver cells and found that SPP2 antagonized bone morphogenetic protein signaling in vitro and in vivo. We also identified cell-surface receptors that interact with SPP2 using a proximity biotinylation assay coupled with mass spectrometry. We showed that SPP2's interactions with integrin family members are in part responsible for some of the regeneration phenotypes. CONCLUSIONS: Using an in vivo CRISPR screening system, we identified SPP2 as a secreted factor that negatively regulates liver regeneration. This study provides ways to identify, validate, and characterize secreted factors in vivo.


Assuntos
Regeneração Hepática , Neoplasias , Camundongos , Animais , Fígado/metabolismo , Hepatócitos/metabolismo , Transdução de Sinais
4.
Biochem Biophys Res Commun ; 665: 159-168, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37163936

RESUMO

Even though various genetic mutations have been identified in muscular dystrophies (MD), there is still a need to understand the biology of MD in the absence of known mutations. Here we reported a new mouse model of MD driven by ectopic expression of PLAG1. This gene encodes a developmentally regulated transcription factor known to be expressed in developing skeletal muscle, and implicated as an oncogene in certain cancers including rhabdomyosarcoma (RMS), an aggressive soft tissue sarcoma composed of myoblast-like cells. By breeding loxP-STOP-loxP-PLAG1 (LSL-PLAG1) mice into the MCK-Cre line, we achieved ectopic PLAG1 expression in cardiac and skeletal muscle. The Cre/PLAG1 mice died before 6 weeks of age with evidence of cardiomyopathy significantly limiting left ventricle fractional shortening. Histology of skeletal muscle revealed dystrophic features, including myofiber necrosis, fiber size variation, frequent centralized nuclei, fatty infiltration, and fibrosis, all of which mimic human MD pathology. QRT-PCR and Western blot revealed modestly decreased Dmd mRNA and dystrophin protein in the dystrophic muscle, and immunofluorescence staining showed decreased dystrophin along the cell membrane. Repression of Dmd by ectopic PLAG1 was confirmed in dystrophic skeletal muscle and various cell culture models. In vitro studies showed that excess IGF2 expression, a transcriptional target of PLAG1, phenocopied PLAG1-mediated down-regulation of dystrophin. In summary, we developed a new mouse model of a lethal MD due to ectopic expression of PLAG1 in heart and skeletal muscle. Our data support the potential contribution of excess IGF2 in this model. Further studying these mice may provide new insights into the pathogenesis of MD and perhaps lead to new treatment strategies.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Camundongos , Humanos , Animais , Distrofina/genética , Distrofia Muscular de Duchenne/genética , Músculo Esquelético/metabolismo , Coração , Fatores de Transcrição/metabolismo , Camundongos Endogâmicos mdx , Modelos Animais de Doenças , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(50): 31591-31602, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33257546

RESUMO

Clathrin-mediated endocytosis (CME) begins with the nucleation of clathrin assembly on the plasma membrane, followed by stabilization and growth/maturation of clathrin-coated pits (CCPs) that eventually pinch off and internalize as clathrin-coated vesicles. This highly regulated process involves a myriad of endocytic accessory proteins (EAPs), many of which are multidomain proteins that encode a wide range of biochemical activities. Although domain-specific activities of EAPs have been extensively studied, their precise stage-specific functions have been identified in only a few cases. Using single-guide RNA (sgRNA)/dCas9 and small interfering RNA (siRNA)-mediated protein knockdown, combined with an image-based analysis pipeline, we have determined the phenotypic signature of 67 EAPs throughout the maturation process of CCPs. Based on these data, we show that EAPs can be partitioned into phenotypic clusters, which differentially affect CCP maturation and dynamics. Importantly, these clusters do not correlate with functional modules based on biochemical activities. Furthermore, we discover a critical role for SNARE proteins and their adaptors during early stages of CCP nucleation and stabilization and highlight the importance of GAK throughout CCP maturation that is consistent with GAK's multifunctional domain architecture. Together, these findings provide systematic, mechanistic insights into the plasticity and robustness of CME.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Membrana Celular/metabolismo , Clatrina/metabolismo , Invaginações Revestidas da Membrana Celular/metabolismo , Endocitose/fisiologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Sistemas CRISPR-Cas/genética , Linhagem Celular , Análise por Conglomerados , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Humanos , Microscopia Intravital/métodos , Substâncias Luminescentes/química , Microscopia de Fluorescência/métodos , Imagem Molecular/métodos , RNA Interferente Pequeno/metabolismo
6.
Audiol Neurootol ; 26(3): 149-156, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33352550

RESUMO

INTRODUCTION: Patients with postlingual deafness usually depend on visual information for communication, and their lipreading ability could influence cochlear implantation (CI) outcomes. However, it is unclear whether preoperative visual dependency in postlingual deafness positively or negatively affects auditory rehabilitation after CI. Herein, we investigated the influence of preoperative audiovisual per-ception on CI outcomes. METHOD: In this retrospective case-comparison study, 118 patients with postlingual deafness who underwent unilateral CI were enrolled. Evaluation of speech perception was performed under both audiovisual (AV) and audio-only (AO) conditions before and after CI. Before CI, the speech perception test was performed under hearing aid (HA)-assisted conditions. After CI, the speech perception test was performed under the CI-only condition. Only patients with a 10% or less preoperative AO speech perception score were included. RESULTS: Multivariable regression analysis showed that age, gender, residual hearing, operation side, education level, and HA usage were not correlated with either postoperative AV (pAV) or AO (pAO) speech perception. However, duration of deafness showed a significant negative correlation with both pAO (p = 0.003) and pAV (p = 0.015) speech perceptions. Notably, the preoperative AV speech perception score was not correlated with pAO speech perception (R2 = 0.00134, p = 0.693) but was positively associated with pAV speech perception (R2 = 0.0731, p = 0.003). CONCLUSION: Preoperative dependency on audiovisual information may positively influence pAV speech perception in patients with postlingual deafness.


Assuntos
Implante Coclear , Implantes Cocleares , Surdez/cirurgia , Audição/fisiologia , Percepção da Fala/fisiologia , Adulto , Idoso , Estudos de Casos e Controles , Surdez/fisiopatologia , Feminino , Testes Auditivos , Humanos , Leitura Labial , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Terapêutica
7.
Audiol Neurootol ; 26(2): 111-120, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32877901

RESUMO

INTRODUCTION: Fluctuating hearing loss is a distinctive feature caused by SLC26A4 variants. We investigated whether cochlear implantation had protective or deleterious effect on hearing fluctuation in patients with biallelic SLC26A4 variants. METHODS: Patients with biallelic SLC26A4 variants (N = 16; age = 10.24 ± 9.20 years) who had unilateral cochlear implantation and consecutive postsurgical, bilateral pure-tone audiograms more than 3 times were selected. We retrospectively reviewed the patients' medical records from 2008 to 2019 obtained from a tertiary medical center and used the auditory threshold change (Shift) over time as a marker of hearing fluctuation. Fluctuation events were counted, and the Shift of the implanted and contralateral ears was compared using logistic regression with a generalized estimating equation and linear mixed model. A total of 178 values were included. RESULTS: The odds of fluctuating hearing frequency were 11.185-fold higher in the unimplanted ears than in the implanted ears postoperatively (p = 0.001). The extent of fluctuation at 250 and 500 Hz was also significantly lower in the implanted ears than in the unimplanted ears after adjusting for every other effect (p = 0.003 and p < 0.001, respectively). Notably, higher residual hearing was rather associated with lesser fluctuation in frequency and the extent of fluctuation at 500 Hz, indicating residual hearing function is not the positive predictor for hearing fluctuation. CONCLUSION: In patients with biallelic SLC26A4 variants, cochlear implantation may reduce the frequency and extent of hearing fluctuations.


Assuntos
Limiar Auditivo/fisiologia , Implante Coclear , Implantes Cocleares , Perda Auditiva/cirurgia , Audição/fisiologia , Transportadores de Sulfato/genética , Adolescente , Audiometria de Tons Puros , Criança , Pré-Escolar , Feminino , Audição/genética , Perda Auditiva/genética , Humanos , Lactente , Masculino , Estudos Retrospectivos , Resultado do Tratamento , Adulto Jovem
8.
Int J Mol Sci ; 22(22)2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34830169

RESUMO

(1) Background: Mutations in epidermal growth factor receptor (EGFR) proteins account for many non-small cell lung cancers (NSCLCs), and EGFR tyrosine kinase inhibitors (TKIs) are being used as targeted therapeutics. However, resistance to TKIs continues to increase owing to additional mutations in more than half of the patients receiving EGFR TKI therapy. In addition to targeting new mutations with next-generation therapeutics, it is necessary to find an alternative target to overcome the challenges associated with resistance. (2) Methods: To identify potential alternative targets in patients with NSCLC undergoing targeted therapy, putative targets were identified by transcriptome profiling and validated for their biological and therapeutic effects in vitro and in vivo. (3) Results: ELF3 was found to be differentially expressed in NSCLC, and ELF3 knockdown significantly increased cell death in K-Ras mutant as well as in EGFR L858R/T790M mutation harboring lung cancer cells. We also found that auranofin, an inhibitor of protein kinase C iota (PKCί), a protein upstream of ELF3, effectively induced cell death. (4) Conclusions: Our study suggests that blocking ELF3 is an effective way to induce cell death in NSCLC with K-Ras and EGFR T790M/L858R mutations and thus advocates the use of auranofin as an effective alternative drug to overcome EGFR TKI resistance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proteínas de Ligação a DNA , Sistemas de Liberação de Medicamentos , Resistencia a Medicamentos Antineoplásicos , Isoenzimas , Neoplasias Pulmonares , Proteína Quinase C , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-ets , Fatores de Transcrição , Células A549 , Substituição de Aminoácidos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutação de Sentido Incorreto , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas Proto-Oncogênicas p21(ras) , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Cancer Cell Int ; 20: 42, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32042269

RESUMO

BACKGROUND: Although major driver gene mutations have been identified, the complex molecular heterogeneity of colorectal cancer (CRC) remains unclear. Capicua (CIC) functions as a tumor suppressor in various types of cancers; however, its role in CRC progression has not been examined. METHODS: Databases for gene expression profile in CRC patient samples were used to evaluate the association of the levels of CIC and Polyoma enhancer activator 3 (PEA3) group genes (ETS translocation variant 1 (ETV1), ETV4, and ETV5), the best-characterized CIC targets in terms of CIC functions, with clinicopathological features of CRC. CIC and ETV4 protein levels were also examined in CRC patient tissue samples. Gain- and loss-of function experiments in cell lines and mouse xenograft models were performed to investigate regulatory functions of CIC and ETV4 in CRC cell growth and invasion. qRT-PCR and western blot analyses were performed to verify the CIC regulation of ETV4 expression in CRC cells. Rescue experiments were conducted using siRNA against ETV4 and CIC-deficient CRC cell lines. RESULTS: CIC expression was decreased in the tissue samples of CRC patients. Cell invasion, migration, and proliferation were enhanced in CIC-deficient CRC cells and suppressed in CIC-overexpressing cells. Among PEA3 group genes, ETV4 levels were most dramatically upregulated and inversely correlated with the CIC levels in CRC patient samples. Furthermore, derepression of ETV4 was more prominent in CIC-deficient CRC cells, when compared with that observed for ETV1 and ETV5. The enhanced cell proliferative and invasive capabilities in CIC-deficient CRC cells were completely recovered by knockdown of ETV4. CONCLUSION: Collectively, the CIC-ETV4 axis is not only a key module that controls CRC progression but also a novel therapeutic and/or diagnostic target for CRC.

10.
Gut ; 68(7): 1259-1270, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30315093

RESUMO

OBJECTIVE: ARID1A is commonly mutated in pancreatic ductal adenocarcinoma (PDAC), but the functional effects of ARID1A mutations in the pancreas are unclear. Understanding the molecular mechanisms that drive PDAC formation may lead to novel therapies. DESIGN: Concurrent conditional Arid1a deletion and Kras activation mutations were modelled in mice. Small-interfering RNA (siRNA) and CRISPR/Cas9 were used to abrogate ARID1A in human pancreatic ductal epithelial cells. RESULTS: We found that pancreas-specific Arid1a loss in mice was sufficient to induce inflammation, pancreatic intraepithelial neoplasia (PanIN) and mucinous cysts. Concurrent Kras activation accelerated the development of cysts that resembled intraductal papillary mucinous neoplasm. Lineage-specific Arid1a deletion confirmed compartment-specific tumour-suppressive effects. Duct-specific Arid1a loss promoted dilated ducts with occasional cyst and PDAC formation. Heterozygous acinar-specific Arid1a loss resulted in accelerated PanIN and PDAC formation with worse survival. RNA-seq showed that Arid1a loss induced gene networks associated with Myc activity and protein translation. ARID1A knockdown in human pancreatic ductal epithelial cells induced increased MYC expression and protein synthesis that was abrogated with MYC knockdown. ChIP-seq against H3K27ac demonstrated an increase in activated enhancers/promoters. CONCLUSIONS: Arid1a suppresses pancreatic neoplasia in a compartment-specific manner. In duct cells, this process appears to be associated with MYC-facilitated protein synthesis.


Assuntos
Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Transformação Celular Neoplásica/genética , Proteínas de Ligação a DNA/genética , Proteínas Nucleares/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Animais , Carcinoma Ductal Pancreático/metabolismo , Técnicas de Cultura de Células , Modelos Animais de Doenças , Humanos , Camundongos , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA