Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanoscale Adv ; 5(16): 4074-4079, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37560415

RESUMO

Conventional exfoliation exploits the anisotropy in bonding or compositional character to delaminate 2D materials with large lateral size and atomic thickness. This approach, however, limits the choice to layered host crystals with a specific composition. Here, we demonstrate the exfoliation of a crystal along planes of ordered vacancies as a novel route toward previously unattainable 2D crystal structures. Pyrrhotite, a non-stoichiometric iron sulfide, was utilized as a prototype system due to its complex vacancy superstructure. Bulk pyrrhotite crystals were synthesized by gas-assisted bulk conversion, and their diffraction pattern revealed a 4C superstructure with 3 vacancy interfaces within the unit cell. Electrochemical intercalation and subsequent delamination yield ultrathin 2D flakes with a large lateral extent. Atomic force microscopy confirms that exfoliation occurs at all three supercell interfaces, resulting in the isolation of 2D structures with sub-unit cell thicknesses of 1/2 and 1/4 monolayers. The impact of controlling the morphology of 2D materials below the monolayer limit on 2D magnetic properties was investigated. Bulk pyrrhotite was shown to exhibit ferrimagnetic ordering that agrees with theoretical predictions and that is retained after exfoliation. A complex magnetic domain structure and an enhanced impact of vacancy planes on magnetization emphasize the potential of our synthesis approach as a powerful platform for modulating magnetic properties in future electronics and spintronics.

2.
Sci Rep ; 8(1): 4046, 2018 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-29511308

RESUMO

Chemical vapor deposition (CVD) is promising for the large scale production of graphene and other two-dimensional materials. Optimization of the CVD process for enhancing their quality is a focus of ongoing effort and significant progress has been made in decreasing the defectiveness associated with grain boundaries and nucleation spots. However, little is known about the quality and origin of structural defects in the outgrowing lattice which are present even in single-crystalline material and represent the limit of current optimization efforts. We here investigate the formation kinetics of such defects by controlling graphene's growth rate over a wide range using nanoscale confinements. Statistical analysis of Raman spectroscopic results shows a clear trend between growth rate and defectiveness that is in quantitative agreement with a model where defects are healed preferentially at the growth front. Our results suggest that low growth rates are required to avoid the freezing of lattice defects and form high quality material. This conclusion is confirmed by a fourfold enhancement in graphene's carrier mobility upon optimization of the growth rate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA