Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytother Res ; 29(5): 749-56, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25682949

RESUMO

Artocarpus altilis (Parkinson) Fosberg has traditionally been used in Indonesia for the treatment of liver cirrhosis, hypertension, and diabetes. In many other countries, it is used for the treatment of malaria, yellow fever, and dengue fever. It has been reported that A. altilis extracts have antiatherosclerotic and cytoprotective effects, but its molecular targets in tumor cells are not yet fully understood. The A. altilis extracts and the partially purified fraction have been shown to inhibit STAT3 activity and the phosphorylation of STAT3 in a dose-dependent manner. To identify the active components, a bioassay-guided isolation of the partially purified fraction resulted in the identification of a geranyl dihydrochalcone, CG901. Its chemical structure was established on the basis of spectroscopic evidence and comparison with published data. The partially purified fraction and the isolated a geranyl dihydrochalcone, CG901, down-regulated the expression of STAT3 target genes, induced apoptosis in DU145 prostate cancer cells via caspase-3 and PARP degradation, and inhibited tumor growth in human prostate tumor (DU145) xenograft initiation model. These results suggest that A. altilis could be a good natural source and that the isolated compound will be a potential lead molecule for developing novel therapeutics against STAT3-related diseases, including cancer and inflammation.


Assuntos
Artocarpus/química , Chalconas/farmacologia , Extratos Vegetais/farmacologia , Neoplasias da Próstata/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral/efeitos dos fármacos , Feminino , Humanos , Masculino , Camundongos Endogâmicos BALB C , Fosforilação , Folhas de Planta/química , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Biochem Pharmacol ; 142: 46-57, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28666623

RESUMO

The roles and significance of signal transducer and activator of transcription 3 (STAT3) in human cancers have been extensively studied and STAT3 is a promising therapeutic target for cancer drug discovery. During the screening of natural products to identify STAT3 inhibitors, we identified geranylnaringenin (CG902), which decreased luciferase activity in a dose-dependent manner. CG902 specifically inhibited STAT3 phosphorylation at Tyr-705 in DU145 prostate cancer cells and decreased the expression levels of STAT3 target genes, such as cyclin D1, cyclin A, and survivin. Notably, the knockdown of the SHP-2 gene by small interfering RNA suppressed the ability of CG902 to inhibit STAT3 activation and CG902 activated the phosphatase activity of SHP-2 through direct interaction with SHP-2 and induced the phosphorylation of SHP-2. The interactions between CG902 and SHP-2 were confirmed by pull-down assay using biotinylated CG902. The interactions were also further validated by the drug affinity responsive target stability (DARTS) and cellular thermal shift assay (CETSA). The inhibitory effect of CG902 on cell growth was confirmed using the DU145 mouse xenograft model. We propose that CG902 inhibits STAT3 activity through a mechanism that involves the interactions between CG902 and SHP-2, and the phosphorylation of SHP-2, which leads to SHP-2 activation in DU145 cells. CG902 is the first compound to regulate STAT3 activity via the modulation of SHP-2 activity, and our results suggest that CG902 is a novel inhibitor of the STAT3 pathway and an activator of SHP-2, and may be a useful lead molecule for the development of a therapeutic STAT3 inhibitor.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Flavanonas/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/uso terapêutico , Artocarpus/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Flavanonas/uso terapêutico , Citometria de Fluxo , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosforilação , Folhas de Planta/química , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , RNA Interferente Pequeno/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Fatores de Tempo , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Mol Model ; 21(11): 280, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26442513

RESUMO

As a key step in achieving low-cost, easily accessible anti-cancer therapy for low- and middle-income countries, we recently established the scientific basis for the folkloric use of Artocarpus altilis for the treatment of cancer by investigating the geranyl dihydrochalcone (CG-901) content and its interference with signal transducer and activator of transcription 3 (STAT3) phosphorylation and blockage of further downstream signaling. In the current study, the CG-901 upstream target was queried by chemical fingerprinting similarity assessment, semi-empirical (PM6ESCF) QMMM and molecular dynamics (MD) simulation. Moderate (∼0.4) to high (∼0.7) Tanimoto scores were found when the CG-901 scaffold was compared to ligands co-crystallized with Janus kinases (JAK) 1-3. High negative energy values were obtained when the CG-901 was treated semi-empirically (PM6ESCF) within the classical field of JAK (1-3). Multiple nanosecond MD simulations showed that CG-901 did not cause any large structural perturbations in the nucleotide-binding, activation and catalytic loops within the kinase (JH1) domain of JAK (1-3); however, it reduced the energy required to attain metastability along the path to energy minima conformation. In comparison to JAK1 and Apo-state JAK2, JAK2-bound CG-901 exhibited a highly re-organized key intra-domain protein network; indicating atomic level interference with inter-residue communication. In conclusion, CG-901 isolated from A. altilis represents a broad-spectrum JAK inhibitor, which may underlie the mechanism of STAT3 phosphorylation blockage. Graphical abstract Upper panel Janus kinase 2 upstream signaling pathway. Lower panel Apo-JAK2 (left) and CG-901-bound JAK2 (right).


Assuntos
Artocarpus/química , Chalconas/farmacologia , Janus Quinase 2/antagonistas & inibidores , Chalconas/isolamento & purificação , Chalconas/metabolismo , Humanos , Janus Quinase 2/química , Janus Quinase 2/metabolismo , Simulação de Dinâmica Molecular , Fosforilação , Estrutura Terciária de Proteína , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA