Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361027

RESUMO

The experimental animal model is still essential in the development of new anticancer drugs. We characterized mouse tumors derived from two-dimensional (2D) monolayer cells or three-dimensional (3D) spheroids to establish an in vivo model with highly standardized conditions. Primary cancer-associated fibroblasts (CAFs) were cultured from head and neck squamous cell carcinoma (HNSCC) tumor tissues and co-injected with monolayer cancer cells or spheroids into the oral mucosa of mice. Mice tumor blood vessels were stained, followed by tissue clearing and 3D Lightsheet fluorescent imaging. We compared the effect of exosomes secreted from 2D or 3D culture conditions on the angiogenesis-related genes in HNSCC cells. Our results showed that both the cells and spheroids co-injected with primary CAFs formed tumors. Interestingly, vasculature was abundantly distributed inside the spheroid-derived but not the monolayer-derived mice tumors. In addition, cisplatin injection more significantly decreased spheroid-derived but not monolayer-derived tumor size in mice. Additionally, exosomes isolated from co-culture media of FaDu spheroid and CAF upregulated angiogenesis-related genes in HNSCC cells as compared to exosomes from FaDu cell and CAF co-culture media under in vitro conditions. The mouse tumor xenograft model derived from 3D spheroids of HNSCC cells with primary CAFs is expected to produce reliable chemotherapy drug screening results given the robust angiogenesis and lack of necrosis inside tumor tissues.


Assuntos
Carcinoma de Células Escamosas/patologia , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias Bucais/patologia , Neovascularização Patológica/patologia , Esferoides Celulares/patologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Carcinoma de Células Escamosas/metabolismo , Exossomos/metabolismo , Feminino , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Bucais/metabolismo , Neovascularização Patológica/metabolismo , Cultura Primária de Células/métodos , Esferoides Celulares/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto/normas
2.
Cell Death Dis ; 15(8): 589, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138148

RESUMO

It is still challenging to predict the efficacy of cisplatin-based therapy, particularly in relation to the activation of macroautophagy/autophagy in oral squamous cell carcinoma (OSCC). We studied the effect of selected chromatin remodeling genes on the cisplatin resistance and their interplay with autophagy in 3-dimensional tumor model and xenografts. We analyzed gene expression patterns in the cisplatin-sensitive UMSCC1, and a paired cisplatin-resistant UM-Cis cells. Many histone protein gene clusters involved in nucleosome assembly showed significant difference of expression. Gain- and loss-of-function analyses revealed an inverse correlation between cisplatin resistance and HIST1H3D expression, while a positive correlation was observed with HIST3H2A or HIST3H2B expression. In UM-Cis, HIST3H2A- and HIST3H2B-mediated chromatin remodeling upregulates autophagy status, which results in cisplatin resistance. Additionally, knockdown of HIST3H2A or HIST3H2B downregulated autophagy-activating genes via chromatin compaction of their promoter regions. MiTF, one of the key autophagy regulators upregulated in UM-Cis, negatively regulated transcription of HIST1H3D, suggesting an interplay between chromatin remodeling-dependent cisplatin resistance and autophagy. On comparing the staining intensity between cisplatin-sensitive and -insensitive tissues from OSCC patients, protein expression pattern of the selected histone protein genes were matched with the in vitro data. By examining the relationship between autophagy and chromatin remodeling genes, we identified a set of candidate genes with potential use as markers predicting chemoresistance in OSCC biopsy samples.


Assuntos
Autofagia , Carcinoma de Células Escamosas , Montagem e Desmontagem da Cromatina , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Neoplasias Bucais , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Humanos , Autofagia/efeitos dos fármacos , Autofagia/genética , Resistencia a Medicamentos Antineoplásicos/genética , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos , Histonas/metabolismo , Camundongos Nus , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Theranostics ; 14(2): 460-479, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169528

RESUMO

Rationale: Platinum-based chemotherapy is commonly used for treating solid tumors, but drug resistance often limits its effectiveness. Cancer-associated fibroblast (CAF)-derived extracellular vesicle (EV), which carry various miRNAs, have been implicated in chemotherapy resistance. However, the molecular mechanism through which CAFs modulate cisplatin resistance in oral squamous cell carcinoma (OSCC) is not well understood. We employed two distinct primary CAF types with differential impacts on cancer progression: CAF-P, representing a more aggressive cancer-promoting category, and CAF-D, characterized by properties that moderately delay cancer progression. Consequently, we sought to investigate whether the two CAF types differentially affect cisplatin sensitivity and the underlying molecular mechanism. Methods: The secretion profile was examined by utilizing an antibody microarray with conditioned medium obtained from the co-culture of OSCC cells and two types of primary CAFs. The effect of CAF-dependent factors on cisplatin resistance was investigated by utilizing conditioned media (CM) and extracellular vesicle (EVs) derived from CAFs. The impacts of candidate genes were confirmed using gain- and loss-of-function analyses in spheroids and organoids, and a mouse xenograft. Lastly, we compared the expression pattern of the candidate genes in tissues from OSCC patients exhibiting different responses to cisplatin. Results: When OSCC cells were cultured with conditioned media (CM) from the two different CAF groups, cisplatin resistance increased only under CAF-P CM. OSCC cells specifically expressed insulin-like growth factor binding protein 3 (IGFBP3) after co-culture with CAF-D. Meanwhile, IGFBP3-knockdown OSCC cells acquired cisplatin resistance in CAF-D CM. IGFBP3 expression was promoted by GATA-binding protein 1 (GATA1), a transcription factor targeted by miR-876-3p, which was enriched only in CAF-P-derived EV. Treatment with CAF-P EV carrying miR-876-3p antagomir decreased cisplatin resistance compared to control miRNA-carrying CAF-P EV. On comparing the staining intensity between cisplatin-sensitive and -insensitive tissues from OSCC patients, there was a positive correlation between IGFBP3 and GATA1 expression and cisplatin sensitivity in OSCC tissues from patients. Conclusion: These results provide insights for overcoming cisplatin resistance, especially concerning EVs within the tumor microenvironment. Furthermore, it is anticipated that the expression levels of GATA1 and miR-876-3p, along with IGFBP3, could aid in the prediction of cisplatin resistance.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma de Células Escamosas , Vesículas Extracelulares , Neoplasias de Cabeça e Pescoço , MicroRNAs , Neoplasias Bucais , Humanos , Animais , Camundongos , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Proliferação de Células , MicroRNAs/metabolismo , Vesículas Extracelulares/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Linhagem Celular Tumoral , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA