Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 25(1): 64, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331751

RESUMO

Functional analysis of high throughput experiments using pathway analysis is now ubiquitous. Though powerful, these methods often produce thousands of redundant results owing to knowledgebase redundancies upstream. This scale of results hinders extensive exploration by biologists and can lead to investigator biases due to previous knowledge and expectations. To address this issue, we present vissE, a flexible network-based analysis and visualisation tool that organises information into semantic categories and provides various visualisation modules to characterise them with respect to the underlying data, thus providing a comprehensive view of the biological system. We demonstrate vissE's versatility by applying it to three different technologies: bulk, single-cell and spatial transcriptomics. Applying vissE to a factor analysis of a breast cancer spatial transcriptomic data, we identified stromal phenotypes that support tumour dissemination. Its adaptability allows vissE to enhance all existing gene-set enrichment and pathway analysis workflows, empowering biologists during molecular discovery.


Assuntos
Neoplasias da Mama , Perfilação da Expressão Gênica , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Transcriptoma , Fenótipo
2.
Sensors (Basel) ; 24(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38931570

RESUMO

Conventional passive ankle foot orthoses (AFOs) have not seen substantial advances or functional improvements for decades, failing to meet the demands of many stakeholders, especially the pediatric population with neurological disorders. Our objective is to develop the first comfortable and unobtrusive powered AFO for children with cerebral palsy (CP), the DE-AFO. CP is the most diagnosed neuromotor disorder in the pediatric population. The standard of care for ankle control dysfunction associated with CP, however, is an unmechanized, bulky, and uncomfortable L-shaped conventional AFO. These passive orthoses constrain the ankle's motion and often cause muscle disuse atrophy, skin damage, and adverse neural adaptations. While powered orthoses could enhance natural ankle motion, their reliance on bulky, noisy, and rigid actuators like DC motors limits their acceptability. Our innovation, the DE-AFO, emerged from insights gathered during customer discovery interviews with 185 stakeholders within the AFO ecosystem as part of the NSF I-Corps program. The DE-AFO is a biomimetic robot that employs artificial muscles made from an electro-active polymer called dielectric elastomers (DEs) to assist ankle movements in the sagittal planes. It incorporates a gait phase detection controller to synchronize the artificial muscles with natural gait cycles, mimicking the function of natural ankle muscles. This device is the first of its kind to utilize lightweight, compact, soft, and silent artificial muscles that contract longitudinally, addressing traditional actuated AFOs' limitations by enhancing the orthosis's natural feel, comfort, and acceptability. In this paper, we outline our design approach and describe the three main components of the DE-AFO: the artificial muscle technology, the finite state machine (the gait phase detection system), and its mechanical structure. To verify the feasibility of our design, we theoretically calculated if DE-AFO can provide the necessary ankle moment assistance for children with CP-aligning with moments observed in typically developing children. To this end, we calculated the ankle moment deficit in a child with CP when compared with the normative moment of seven typically developing children. Our results demonstrated that the DE-AFO can provide meaningful ankle moment assistance, providing up to 69% and 100% of the required assistive force during the pre-swing phase and swing period of gait, respectively.


Assuntos
Tornozelo , Paralisia Cerebral , Órtoses do Pé , Robótica , Paralisia Cerebral/fisiopatologia , Paralisia Cerebral/reabilitação , Humanos , Criança , Robótica/métodos , Tornozelo/fisiopatologia , Tornozelo/fisiologia , Elastômeros/química , Marcha/fisiologia , Desenho de Equipamento , Fenômenos Biomecânicos
3.
Blood ; 138(4): 304-317, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-33786586

RESUMO

Hematopoiesis is extrinsically controlled by cells of the bone marrow microenvironment, including skeletal lineage cells. The identification and subsequent studies of distinct subpopulations of maturing skeletal cells is currently limited because of a lack of methods to isolate these cells. We found that murine Lin-CD31-Sca-1-CD51+ cells can be divided into 4 subpopulations by using flow cytometry based on their expression of the platelet-derived growth factor receptors ⍺ and ß (PDGFR⍺ and PDGFRß). The use of different skeletal lineage reporters confirmed the skeletal origin of the 4 populations. Multiplex immunohistochemistry studies revealed that all 4 populations were localized near the growth plate and trabecular bone and were rarely found near cortical bone regions or in central bone marrow. Functional studies revealed differences in their abundance, colony-forming unit-fibroblast capacity, and potential to differentiate into mineralized osteoblasts or adipocytes in vitro. Furthermore, the 4 populations had distinct gene expression profiles and differential cell surface expression of leptin receptor (LEPR) and vascular cell adhesion molecule 1 (VCAM-1). Interestingly, we discovered that 1 of these 4 different skeletal populations showed the highest expression of genes involved in the extrinsic regulation of B lymphopoiesis. This cell population varied in abundance between distinct hematopoietically active skeletal sites, and significant differences in the proportions of B-lymphocyte precursors were also observed in these distinct skeletal sites. This cell population also supported pre-B lymphopoiesis in culture. Our method of isolating 4 distinct maturing skeletal populations will help elucidate the roles of distinct skeletal niche cells in regulating hematopoiesis and bone.


Assuntos
Linfócitos B/imunologia , Diferenciação Celular/imunologia , Linfopoese/imunologia , Músculo Esquelético/imunologia , Animais , Diferenciação Celular/genética , Linfopoese/genética , Camundongos , Camundongos Transgênicos
4.
Sensors (Basel) ; 23(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37837105

RESUMO

Machine learning-based gait systems facilitate the real-time control of gait assistive technologies in neurological conditions. Improving such systems needs the identification of kinematic signals from inertial measurement unit wearables (IMUs) that are robust across different walking conditions without extensive data processing. We quantify changes in two kinematic signals, acceleration and angular velocity, from IMUs worn on the frontal plane of bilateral shanks and thighs in 30 adolescents (8-18 years) on a treadmills and outdoor overground walking at three different speeds (self-selected, slow, and fast). Primary curve-based analyses included similarity analyses such as cosine, Euclidean distance, Poincare analysis, and a newly defined bilateral symmetry dissimilarity test (BSDT). Analysis indicated that superior-inferior shank acceleration (SI shank Acc) and medial-lateral shank angular velocity (ML shank AV) demonstrated no differences to the control signal in BSDT, indicating the least variability across the different walking conditions. Both SI shank Acc and ML shank AV were also robust in Poincare analysis. Secondary parameter-based similarity analyses with conventional spatiotemporal gait parameters were also performed. This normative dataset of walking reports raw signal kinematics that demonstrate the least to most variability in switching between treadmill and outdoor walking to help guide future machine learning models to assist gait in pediatric neurological conditions.


Assuntos
Análise da Marcha , Dispositivos Eletrônicos Vestíveis , Humanos , Adolescente , Criança , Fenômenos Biomecânicos , Marcha , Caminhada
5.
Sensors (Basel) ; 21(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209917

RESUMO

Functional electrical stimulation (FES) walking interventions have demonstrated improvements to gait parameters; however, studies were often confined to stimulation of one or two muscle groups. Increased options such as number of muscle groups targeted, timing of stimulation delivery, and level of stimulation are needed to address subject-specific gait deviations. We aimed to demonstrate the feasibility of using a FES system with increased stimulation options during walking in children with cerebral palsy (CP). Three physical therapists designed individualized stimulation programs for six children with CP to target participant-specific gait deviations. Stimulation settings (pulse duration and current) were tuned to each participant. Participants donned our custom FES system that utilized gait phase detection to control stimulation to lower extremity muscle groups and walked on a treadmill at a self-selected speed. Motion capture data were collected during walking with and without the individualized stimulation program. Eight gait metrics and associated timing were compared between walking conditions. The prescribed participant-specific stimulation programs induced significant change towards typical gait in at least one metric for each participant with one iteration of FES-walking. FES systems with increased stimulation options have the potential to allow the physical therapist to better target the individual's gait deviations than a one size fits all device.


Assuntos
Paralisia Cerebral , Terapia por Estimulação Elétrica , Transtornos Neurológicos da Marcha , Criança , Estimulação Elétrica , Marcha , Humanos , Caminhada
6.
Sensors (Basel) ; 21(22)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34833666

RESUMO

Recumbent stationary cycling is a potential exercise modality for individuals with cerebral palsy (CP) that lack the postural control needed for upright exercises. Functional electrical stimulation (FES) of lower extremity muscles can help such individuals reach the cycling intensities that are required for aerobic benefits. The aim of this study was to examine the effect of cycling with and without FES assistance to that of a no-intervention control group on the cardiorespiratory fitness of children with CP. Thirty-nine participants were randomized to a FES group that underwent an 8-week FES-assisted cycling program, the volitional group (VOL), who cycled without FES, or a no-intervention control group (CON) (15 FES, 11 VOL, 13 CON). Cadence, peak VO2, and net rise in heart rate were assessed at baseline, end of training, and washout (8-weeks after cessation of training). Latent growth curve modeling was used for analysis. The FES group showed significantly higher cycling cadences than the VOL and CON groups at POST and WO. There were no differences in improvements in the peak VO2 and peak net HR between groups. FES-assisted cycling may help children with CP attain higher cycling cadences and to retain these gains after training cessation. Higher training intensities may be necessary to obtain improvements in peak VO2 and heart rate.


Assuntos
Paralisia Cerebral , Terapia por Estimulação Elétrica , Traumatismos da Medula Espinal , Criança , Estimulação Elétrica , Exercício Físico , Terapia por Exercício , Humanos
7.
Sensors (Basel) ; 20(18)2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942645

RESUMO

Video- and sensor-based gait analysis systems are rapidly emerging for use in 'real world' scenarios outside of typical instrumented motion analysis laboratories. Unlike laboratory systems, such systems do not use kinetic data from force plates, rather, gait events such as initial contact (IC) and terminal contact (TC) are estimated from video and sensor signals. There are, however, detection errors inherent in kinematic gait event detection methods (GEDM) and comparative study between classic laboratory and video/sensor-based systems is warranted. For this study, three kinematic methods: coordinate based treadmill algorithm (CBTA), shank angular velocity (SK), and foot velocity algorithm (FVA) were compared to 'gold standard' force plate methods (GS) for determining IC and TC in adults (n = 6), typically developing children (n = 5) and children with cerebral palsy (n = 6). The root mean square error (RMSE) values for CBTA, SK, and FVA were 27.22, 47.33, and 78.41 ms, respectively. On average, GED was detected earlier in CBTA and SK (CBTA: -9.54 ± 0.66 ms, SK: -33.41 ± 0.86 ms) and delayed in FVA (21.00 ± 1.96 ms). The statistical model demonstrated insensitivity to variations in group, side, and individuals. Out of three kinematic GEDMs, SK GEDM can best be used for sensor-based gait event detection.


Assuntos
, Análise da Marcha , Adulto , Algoritmos , Fenômenos Biomecânicos , Paralisia Cerebral/fisiopatologia , Criança , Humanos , Padrões de Referência
8.
Mol Biol Rep ; 46(6): 5919-5930, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31410687

RESUMO

In the progression of cancer, cells acquire genetic mutations that cause uncontrolled growth. Over time, the primary tumour may undergo additional mutations that allow for the cancerous cells to spread throughout the body as metastases. Since metastatic development typically results in markedly worse patient outcomes, research into the identity and function of metastasis-associated biomarkers could eventually translate into clinical diagnostics or novel therapeutics. Although the general processes underpinning metastatic progression are understood, no clear cross-cancer biomarker profile has emerged. However, the literature suggests that some microRNAs (miRNAs) may play an important role in the metastatic progression of several cancer types. Using a subset of The Cancer Genome Atlas (TCGA) data, we performed an integrated analysis of mRNA and miRNA expression with paired metastatic and primary tumour samples to interrogate how the miRNA-mRNA regulatory axis influences metastatic progression. From this, we successfully built mRNA- and miRNA-specific classifiers that can discriminate pairs of metastatic and primary samples across 11 cancer types. In addition, we identified a number of miRNAs whose metastasis-associated dysregulation could predict mRNA metastasis-associated dysregulation. Among the most predictive miRNAs, we found several previously implicated in cancer progression, including miR-301b, miR-1296, and miR-423. Taken together, our results suggest that metastatic samples have a common cross-cancer signature when compared with their primary tumour pair, and that these miRNA biomarkers can be used to predict metastatic status as well as mRNA expression.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Metástase Neoplásica/genética , Neoplasias/genética , Biomarcadores Tumorais/genética , Bases de Dados Genéticas , Previsões/métodos , Perfilação da Expressão Gênica/métodos , Humanos , MicroRNAs/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA Mensageiro/genética
10.
Sensors (Basel) ; 19(11)2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31159379

RESUMO

A recently designed gait phase detection (GPD) system, with the ability to detect all seven phases of gait in healthy adults, was modified for GPD in children with cerebral palsy (CP). A shank-attached gyroscope sent angular velocity to a rule-based algorithm in LabVIEW to identify the distinct characteristics of the signal. Seven typically developing children (TD) and five children with CP were asked to walk on treadmill at their self-selected speed while using this system. Using only shank angular velocity, all seven phases of gait (Loading Response, Mid-Stance, Terminal Stance, Pre-Swing, Initial Swing, Mid-Swing and Terminal Swing) were reliably detected in real time. System performance was validated against two established GPD methods: (1) force-sensing resistors (GPD-FSR) (for typically developing children) and (2) motion capture (GPD-MoCap) (for both typically developing children and children with CP). The system detected over 99% of the phases identified by GPD-FSR and GPD-MoCap. Absolute values of average gait phase onset detection deviations relative to GPD-MoCap were less than 100 ms for both TD children and children with CP. The newly designed system, with minimized sensor setup and low processing burden, is cosmetic and economical, making it a viable solution for real-time stand-alone and portable applications such as triggering functional electrical stimulation (FES) in rehabilitation systems. This paper verifies the applicability of the GPD system to identify specific gait events for triggering FES to enhance gait in children with CP.


Assuntos
Paralisia Cerebral/fisiopatologia , Marcha/fisiologia , Adolescente , Algoritmos , Técnicas Biossensoriais/métodos , Criança , Estimulação Elétrica , Feminino , Humanos , Masculino , Dispositivos Eletrônicos Vestíveis
11.
Am J Med Genet B Neuropsychiatr Genet ; 180(7): 508-518, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31025483

RESUMO

Although neuropsychiatric disorders have an established genetic background, their molecular foundations remain elusive. This has prompted many investigators to search for explanatory biomarkers that can predict clinical outcomes. One approach uses machine learning to classify patients based on blood mRNA expression. However, these endeavors typically fail to achieve the high level of performance, stability, and generalizability required for clinical translation. Moreover, these classifiers can lack interpretability because not all genes have relevance to researchers. For this study, we hypothesized that annotation-based classifiers can improve classification performance, stability, generalizability, and interpretability. To this end, we evaluated the models of four classification algorithms on six neuropsychiatric data sets using four annotation databases. Our results suggest that the Gene Ontology Biological Process database can transform gene expression into an annotation-based feature space that is accurate and stable. We also show how annotation features can improve the interpretability of classifiers: as annotations are used to assign biological importance to genes, the biological importance of annotation-based features are the features themselves. In evaluating the annotation features, we find that top ranked annotations tend contain top ranked genes, suggesting that the most predictive annotations are a superset of the most predictive genes. Based on this, and the fact that annotations are used routinely to assign biological importance to genetic data, we recommend transforming gene-level expression into annotation-level expression prior to the classification of neuropsychiatric conditions.


Assuntos
Transtornos Mentais/classificação , Doenças do Sistema Nervoso/classificação , Neuropsiquiatria/métodos , Algoritmos , Biologia Computacional/métodos , Bases de Dados Genéticas , Ontologia Genética , Humanos
12.
Am J Med Genet B Neuropsychiatr Genet ; 180(6): 377-389, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30520558

RESUMO

Autism spectrum disorder (ASD) is a markedly heterogeneous condition with a varied phenotypic presentation. Its high concordance among siblings, as well as its clear association with specific genetic disorders, both point to a strong genetic etiology. However, the molecular basis of ASD is still poorly understood, although recent studies point to the existence of sex-specific ASD pathophysiologies and biomarkers. Despite this, little is known about how exactly sex influences the gene expression signatures of ASD probands. In an effort to identify sex-dependent biomarkers and characterize their function, we present an analysis of a single paired-end postmortem brain RNA-Seq data set and a meta-analysis of six blood-based microarray data sets. Here, we identify several genes with sex-dependent dysregulation, and many more with sex-independent dysregulation. Moreover, through pathway analysis, we find that these sex-independent biomarkers have substantially different biological roles than the sex-dependent biomarkers, and that some of these pathways are ubiquitously dysregulated in both postmortem brain and blood. We conclude by synthesizing the discovered biomarker profiles with the extant literature, by highlighting the advantage of studying sex-specific dysregulation directly, and by making a call for new transcriptomic data that comprise large female cohorts.


Assuntos
Transtorno do Espectro Autista/genética , Redes Reguladoras de Genes/genética , Caracteres Sexuais , Transtorno do Espectro Autista/fisiopatologia , Transtorno Autístico/genética , Transtorno Autístico/fisiopatologia , Biomarcadores , Encéfalo/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Masculino , Análise de Sequência de RNA/métodos , Irmãos , Transcriptoma/genética
13.
J Neuroeng Rehabil ; 15(1): 115, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30526617

RESUMO

BACKGROUND: Stochastic Resonance (SR) Stimulation has been used to enhance balance in populations with sensory deficits by improving the detection and transmission of afferent information. Despite the potential promise of SR in improving postural control, its use in individuals with cerebral palsy (CP) is novel. The objective of this study was to investigate the immediate effects of electrical SR stimulation when applied in the ankle muscles and ligaments on postural stability in children with CP and their typically developing (TD) peers. METHODS: Ten children with spastic diplegia (GMFCS level I- III) and ten age-matched TD children participated in this study. For each participant the SR sensory threshold was determined. Then, five different SR intensity levels (no stimulation, 25, 50, 75, and 90% of sensory threshold) were used to identify the optimal SR intensity for each subject. The optimal SR and no stimulation condition were tested while children stood on top of 2 force plates with their eyes open and closed. To assess balance, the center of pressure velocity (COPV) in anteroposterior (A/P) and medial-lateral (M/L) direction, 95% COP confidence ellipse area (COPA), and A/P and M/L root mean square (RMS) measures were computed and compared. RESULTS: For the CP group, SR significantly decreased COPV in A/P direction, and COPA measures compared to the no stimulation condition for the eyes open condition. In the eyes closed condition, SR significantly decreased COPV only in M/L direction. Children with CP demonstrated greater reduction in all the COP measures but the RMS in M/L direction during the eyes open condition compared to their TD peers. The only significant difference between groups in the eyes closed condition was in the COPV in M/L direction. CONCLUSIONS: SR electrical stimulation may be an effective stimulation approach for decreasing postural sway and has the potential to be used as a therapeutic tool to improve balance. Applying subject-specific SR stimulation intensities is recommended to maximize balance improvements. Overall, balance rehabilitation interventions in CP might be more effective if sensory facilitation methods, like SR, are utilized by the clinicians. TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT02456376; 28 May 2015 (Retrospectively registered); https://clinicaltrials.gov/ct2/show/NCT02456376 .


Assuntos
Paralisia Cerebral/reabilitação , Terapia por Estimulação Elétrica/métodos , Equilíbrio Postural/fisiologia , Adolescente , Estudos de Casos e Controles , Criança , Feminino , Humanos , Masculino , Limiar Sensorial/fisiologia
14.
J Comp Neurol ; 532(7): e25660, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39039998

RESUMO

Lafora disease (LD) is a syndrome of progressive myoclonic epilepsy and cumulative neurocognitive deterioration caused by recessively inherited genetic lesions of EPM2A (laforin) or NHLRC1 (malin). Neuropsychiatric symptomatology in LD is thought to be directly downstream of neuronal and astrocytic polyglucosan aggregates, termed Lafora bodies (LBs), which faithfully accumulate in an age-dependent manner in all mouse models of LD. In this study, we applied home-cage monitoring to examine the extent of neurobehavioral deterioration in a model of malin-deficient LD as a means to identify robust preclinical endpoints that may guide the selection of novel genetic treatments. At 6 weeks, ∼6-7 months, and ∼12 months of age, malin-deficient mice ("KO") and wild-type (WT) littermates underwent a standardized home-cage behavioral assessment designed to non-obtrusively appraise features of rest/arousal, consumptive behaviors, risk aversion, and voluntary wheel-running. At all timepoints, and over a range of metrics that we report transparently, WT and KO mice were essentially indistinguishable. In contrast, within WT mice compared across the same timepoints, we identified age-related nocturnal hypoactivity, diminished sucrose preference, and reduced wheel-running. Neuropathological examinations in subsets of the same mice revealed expected age-dependent LB accumulation, gliosis, and microglial activation in cortical and subcortical brain regions. At 12 months of age, despite the burden of neocortical LBs, we did not identify spontaneous seizures during an electroencephalographic (EEG) survey, and KO and WT mice exhibited similar spectral EEG features. However, in an in vitro assay of neocortical function, paroxysmal bursts of network activity (UP states) in KO slices were more prolonged at 3 and 6 months of age, but similar to WT at 12 months. KO mice displayed a distinct response to pentylenetetrazole, with a greater incidence of clonic seizures and a more pronounced postictal suppression of movement, feeding, and drinking behavior. Together, these results highlight the clinicopathologic dissociation in a mouse model of LD, where the accrual of LBs may latently modify cortical circuit function and seizure threshold without clinically meaningful changes in home-cage behavior. Our findings allude to a delay between LB accumulation and neurobehavioral decline in LD: one that may provide a window for treatment, and whose precise duration may be difficult to ascertain within the typical lifespan of a laboratory mouse.


Assuntos
Comportamento Animal , Doença de Lafora , Camundongos Knockout , Ubiquitina-Proteína Ligases , Animais , Doença de Lafora/genética , Doença de Lafora/patologia , Camundongos , Comportamento Animal/fisiologia , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Modelos Animais de Doenças , Corpos de Inclusão/patologia , Corpos de Inclusão/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteínas Tirosina Fosfatases não Receptoras/deficiência , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia
15.
Front Rehabil Sci ; 4: 1002222, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937105

RESUMO

Background: Children with cerebral palsy (CP) show progressive loss of ambulatory function characterized by kinematic deviations at the hip, knee, and ankle. Functional electrical stimulation (FES) can lead to more typical lower limb kinematics during walking by eliciting appropriately timed muscle contractions. FES-assisted walking interventions have shown mixed to positive results in improving lower limb kinematics through immediate correction of gait during the application of FES, or long-term, persisting effects of non-FES-assisted gait improvements following multi-week FES-assisted gait training, at the absence of stimulation, i.e., neurotherapeutic effects. It is unknown, however, if children with CP will demonstrate a neurotherapeutic response following FES-assisted gait training because of the CP population's heterogeneity in gait deviations and responses to FES. Identifying the neurotherapeutic responders is, therefore, important to optimize the training interventions to those that have higher probability of benefiting from the intervention. Objective: The purpose of this case study was to investigate the relationship between immediate and neurotherapeutic effects of FES-assisted walking to identify responders to a FES-assisted gait training protocol. Methods: The primary outcome was Gait Deviation Index (GDI) and secondary outcome was root mean squared error (RMSE) of the lower extremity joint angles in the sagittal plane between participants with CP and a typically developing (TD) dataset. Potential indicators were defined as immediate improvements from baseline during FES-assisted walking followed by neurotherapeutic improvements at the end of training. Case description: Gait analysis of two adolescent female participants with spastic diplegia (Gross Motor Function Classification System level II and III) was conducted at the start and end of a 12-week FES-assisted treadmill training protocol. Participant 1 had scissoring crouch gait, while participant 2 had jump gait. Outcomes: The GDI showed both immediate (presence of FES) and neurotherapeutic (absence of FES after training period) improvements from baseline in our two participants. Joint angle RMSE showed mixed trends between immediate and neurotherapeutic changes from baseline. The GDI warrants investigation in a larger sample to determine if it can be used to identify responders to FES-assisted gait training.

16.
Gait Posture ; 106: 47-52, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37659222

RESUMO

BACKGROUND: Sensory deficits in individuals with cerebral palsy (CP) play a critical role in balance control. However, there is a lack of effective interventions that address sensory facilitation to improve walking balance. Stochastic Resonance (SR) stimulation involves delivering sub threshold noise to improve balance in patients with sensory deficits by enhancing the detection of sensory input. RESEARCH QUESTION: To investigate the immediate effects of SR on walking balance in individuals with and without CP. METHODS: Thirty-four participants (17 CP, 17 age-and sex-matched typically developing controls or TD) between 8 and 24 years of age were recruited. SR stimulation was applied to the muscles and ligaments of ankle and hip joint. An optimal SR intensity during walking was determined for each subject. Participants walked on a self-paced treadmill for three trials of two minutes each using a random order of SR stimulation (SR) and no stimulation (noSR) control conditions. Our primary outcome measure was minimum lateral margin of stability (MOS). Secondary outcome measures include anterior MOS before heelstrike and spatiotemporal gait parameters. We performed two-way mixed ANOVAs with group (CP, TD) as between-subject and condition (noSR, SR) as within subject factors. RESULTS: Compared to walking without SR, there was a small but significant increase in the lateral and anterior MOS with SR stimulation, implying that a larger impulse was needed to become unstable, in turn implying higher stability. Step width and step ength decreased with SR for the CP group with SR stimulation. There were no significant effects for other spatiotemporal variables. SIGNIFICANCE: Sub threshold electrical noise can slightly improve walking balance control in individuals with CP. SR stimulation, through enhanced proprioception, may have improved the CP group's awareness of body motion during walking, thus leading them to adopt a more conservative stability strategy to prevent a potential fall.


Assuntos
Paralisia Cerebral , Adolescente , Criança , Humanos , Adulto Jovem , Paralisia Cerebral/complicações , Marcha , Equilíbrio Postural/fisiologia , Vibração , Caminhada/fisiologia , Masculino , Feminino
17.
bioRxiv ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37745312

RESUMO

Lafora Disease (LD) is a syndrome of progressive myoclonic epilepsy and cumulative neurocognitive deterioration caused by recessively inherited genetic lesions of EPM2A (laforin) or NHLRC1 (malin). Neuropsychiatric symptomatology in LD is thought to be directly downstream of neuronal and astrocytic polyglucosan aggregates, termed Lafora bodies (LBs), which faithfully accumulate in an age-dependent manner in all mouse models of LD. In this study, we applied home-cage monitoring to examine the extent of neurobehavioral deterioration in a model of malin-deficient LD, as a means to identify robust preclinical endpoints that may guide the selection of novel genetic treatments. At 6 weeks, ~6-7 months and ~12 months of age, malin deficient mice ("KO") and wild type (WT) littermates underwent a standardized home-cage behavioral assessment designed to non-obtrusively appraise features of rest/arousal, consumptive behaviors, risk aversion and voluntary wheel-running. At all timepoints, and over a range of metrics that we report transparently, WT and KO mice were essentially indistinguishable. In contrast, within WT mice compared across timepoints, we identified age-related nocturnal hypoactivity, diminished sucrose preference and reduced wheel-running. Neuropathological examinations in subsets of the same mice revealed expected age dependent LB accumulation, gliosis and microglial activation in cortical and subcortical brain regions. At 12 months of age, despite the burden of neocortical LBs, we did not identify spontaneous seizures during an electroencephalographic (EEG) survey, and KO and WT mice exhibited similar spectral EEG features. Using an in vitro assay of neocortical function, paroxysmal increases in network activity (UP states) in KO slices were more prolonged at 3 and 6 months of age, but were similar to WT at 12 months. KO mice displayed a distinct response to pentylenetetrazole, with a greater incidence of clonic seizures and a more pronounced post-ictal suppression of movement, feeding and drinking behavior. Together, these results highlight a stark clinicopathologic dissociation in a mouse model of LD, where LBs accrue substantially without clinically meaningful changes in overall wellbeing. Our findings allude to a delay between LB accumulation and neurobehavioral decline: one that may provide a window for treatment, and whose precise duration may be difficult to ascertain within the typical lifespan of a laboratory mouse.

18.
Pediatr Phys Ther ; 24(2): 177-81; discussion 182, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22466388

RESUMO

PURPOSE: The purpose of this study was to examine the relationship between spasticity and muscle volume in children with cerebral palsy (CP), using isokinetic dynamometry and magnetic resonance imaging. METHODS: A retrospective sample of 8 children with diplegic CP was analyzed. One set of 10 passive knee flexion movements was completed at a velocity of 180° per second with concurrent surface electromyography of the medial hamstrings (MH) and vastus lateralis (VL) to assess knee extensor spasticity. Magnetic resonance imaging was used to measure maximum cross-sectional area and muscle volume of the quadriceps femoris. RESULTS: The quadriceps femoris muscle volume was positively correlated with MH reflex activity, VL reflex activity, MH/VL co-contraction, and peak knee extensor passive torque (P < .05). CONCLUSION: The present findings suggest that higher levels of knee extensor muscle spasticity are associated with greater quadriceps muscle volume in children with spastic diplegic CP.


Assuntos
Paralisia Cerebral/complicações , Espasticidade Muscular/patologia , Espasticidade Muscular/fisiopatologia , Força Muscular/fisiologia , Músculo Esquelético/patologia , Adolescente , Paralisia Cerebral/patologia , Paralisia Cerebral/fisiopatologia , Criança , Feminino , Humanos , Joelho/fisiopatologia , Imageamento por Ressonância Magnética , Masculino , Espasticidade Muscular/diagnóstico , Espasticidade Muscular/etiologia , Dinamômetro de Força Muscular , Tamanho do Órgão , Amplitude de Movimento Articular/fisiologia , Reflexo/fisiologia , Estudos Retrospectivos
19.
Front Hum Neurosci ; 16: 977032, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158616

RESUMO

Individuals with cerebral palsy (CP) have deficits in processing of somatosensory and proprioceptive information. To compensate for these deficits, they tend to rely on vision over proprioception in single plane upper and lower limb movements and in standing. It is not known whether this also applies to walking, an activity where the threat to balance is higher. Through this study, we used visual perturbations to understand how individuals with and without CP integrate visual input for walking balance control. Additionally, we probed the balance mechanisms driving the responses to the visual perturbations. More specifically, we investigated differences in the use of ankle roll response i.e., the use of ankle inversion, and the foot placement response, i.e., stepping in the direction of perceived fall. Thirty-four participants (17 CP, 17 age-and sex-matched typically developing controls or TD) were recruited. Participants walked on a self-paced treadmill in a virtual reality environment. Intermittently, the virtual scene was rotated in the frontal plane to induce the sensation of a sideways fall. Our results showed that compared to their TD peers, the overall body sway in response to the visual perturbations was magnified and delayed in CP group, implying that they were more affected by changes in visual cues and relied more so on visual information for walking balance control. Also, the CP group showed a lack of ankle response, through a significantly reduced ankle inversion on the affected side compared to the TD group. The CP group showed a higher foot placement response compared to the TD group immediately following the visual perturbations. Thus, individuals with CP showed a dominant proximal foot placement strategy and diminished ankle roll response, suggestive of a reliance on proximal over distal control of walking balance in individuals with CP.

20.
Materials (Basel) ; 15(9)2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35591424

RESUMO

The tensile bond strength between zirconia subjected to different surface-pretreatment methods and methacryloyloxydecyl-dihydrogen-phosphate (MDP)-containing self-adhesive resin cement was evaluated herein. Eighty-eight cylindrical zirconia specimens were randomly divided into the following four groups based on the pretreatment method: (1) no treatment, (2) air abrasion, (3) HNO3/HF etching, and (4) zirconia-nanoparticle coating. The tensile bond strength of the zirconia−resin-cement complexes was investigated. One-way ANOVA and post hoc tests were performed at a 95% significance level, and the Weibull modulus was calculated. Fracture patterns were visualized by SEM. The surface roughness of the specimens without resin bonding was evaluated by AFM. The tensile bond strength of the specimens decreased as follows: Groups 3 > 4 > 2 > 1 (28.2 ± 6.6, 26.1 ± 5.7, 16.6 ± 3.3, and 13.9 ± 3.0 MPa, respectively). Groups 3 and 4 had significantly higher tensile bond strengths (p < 0.05) and lower fracture probabilities than those of Groups 1 and 2. They also showed both mixed failure and resin-cement cohesive failure, whereas Groups 1 and 2 showed mixed failure exclusively. The zirconia−resin tensile bond was stronger after HNO3/HF etching or ZrO2-nanoparticle coating than after air abrasion or no treatment. The estimated surface roughness decreased as follows: Groups 3 > 4 > 2 > 1. The combination of zirconia pretreated with HNO3/HF etching or ZrO2-nanoparticle coating and an MDP-containing self-adhesive resin cement can increase the clinical longevity of zirconia restorations by preventing their decementation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA