Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 637: 136-143, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36399799

RESUMO

Although microdialysis is a common in vivo sampling technique, a detailed characterization of the performance of a microdialysis probe used for sampling ethanol molecules has not been conducted. In this work, experimental and computational investigations were carried out to quantitatively study ethanol diffusion characteristics for home-made and commercially available probes. Probe efficiency, i.e. recovery rate (defined as the ethanol concentration in the dialysate to that in the external medium surrounding the probe) was used to characterize the performance. The recovery rate was measured at different perfusion flow rates (0.1, 0.2, 0.5, 1, 1.5, 2 µL/min) and external ethanol concentrations (1, 2.5, 5, 10, 20 mM) with controlled environmental conditions. Effect of temperature was also investigated at 19, 37 and 47 °C. The results show that reducing the flow rate from 2 to 0.1 µL/min at least triples the recovery rate for the home-made probes, and it remains nearly unchanged when varying external ethanol concentration. The performance for two commercial microdialysis probes with different membrane materials and configurations were also determined and have similar recovery rates. Through computational modeling, the diffusion coefficient of ethanol in the semipermeable membrane of the home-made probe was determined by fitting the experimental data, and it was found to be 9 × 1011 m2/s (R2 > 0.99). In addition, the depletion effect over time at different flow rates along with estimated in vivo ethanol clearance were simulated numerically, showing that the depletion region shrinks significantly when the flow rate is below 1 µL/min. The results provide better understanding of the diffusion characteristics of the microdialysis probe when used for sampling ethanol which can be used for better interpretation of in vivo measurements and for microdialysis probe optimization.


Assuntos
Etanol , Microdiálise , Perfusão , Simulação por Computador , Difusão
2.
Analyst ; 144(11): 3494-3504, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31062784

RESUMO

An oxygen gradient is a key variable influencing various biological activities in vivo, such as tissue repair and tumor growth. To study the phenomenon, in vitro cell studies using microfluidic devices capable of generating oxygen gradients have been developed recently. However, it is challenging to accurately measure the gradient profiles in devices. The traditional fluorescence intensity-based method suffers from the difficulty of accurate measurement due to background fluorescence artefacts. In addition, it is hard to obtain accurate calibration conditions because of the difficulties to achieve a fully depleted and saturated oxygen concentrations in the devices. To overcome these difficulties, a widefield frequency domain fluorescence imaging microscopy (FD-FLIM) system was constructed and utilized to accurately measure oxygen gradient profiles in a microfluidic device in this paper. Since lifetime-based measurements do not solely depend on intensity variations, oxygen calibration processes are amiable and the measured oxygen concentrations can be more accurate. The performance of the FD-FLIM system was validated by comparing the experimental and simulation results in microfluidic devices with different geometries. The experimental results show that the oxygen gradients generated from the chemical reaction method can provide more hypoxic oxygen conditions compared to the gradients created by the gas flowing method. Owing to the advantages provided by the widefield microscopy technique, the image acquisition time can be significantly reduced resulting in less photobleaching for time-lapsed imaging applications. Consequently, the measurement technique developed in this paper is an efficient tool, which can greatly help scientists to better study biological activities under various oxygen conditions.

3.
Anal Chem ; 90(3): 2317-2325, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29293313

RESUMO

This paper reports a microfluidic viscometer with an integrated pressure sensor based on electrofluidic circuits, which are electrical circuits constructed by ionic liquid-filled microfluidic channels. The electrofluidic circuit provides a pressure-sensing scheme with great long-term and thermal stability. The viscosity of the tested fluidic sample is estimated by its flow resistance, which is a function of pressure drop, flow rate, and the geometry of the microfluidic channel. The viscometer can be exploited to measure viscosity of either Newtonian or non-Newtonian power-law fluid under various shear rates (3-500 1/s) and temperatures (4-70 °C) with small sample volume (less than 400 µL). The developed sensor-integrated microfluidic viscometer is made of poly(dimethylsiloxane) (PDMS) with transparent electrofluidic circuit, which makes it feasible to simultaneously image samples under tests. In addition, the entire device is disposable to prevent cross-contamination between samples, which is desired for various chemical and biomedical applications. In the experiments, viscosities of Newtonian fluids, glycerol water solutions with different concentrations and a mixture of pyrogallol and sodium hydroxide (NaOH), and non-Newtonian fluids, xanthan gum solutions and human blood samples, have been characterized. The results demonstrate that the developed microfluidic viscometer provides a convenient and useful platform for practical viscosity characterization of fluidic samples for a wide variety of applications.

4.
Anal Methods ; 16(26): 4322-4332, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38888243

RESUMO

Microdialysis is an important technique for in vivo sampling of tissue's biochemical composition. Understanding the factors that affect the performance of the microdialysis probes and developing methods for sample analysis are crucial for obtaining reliable results. In this work, we used experimental and numerical procedures to study the performance of microdialysis probes having different configurations, membrane materials and dimensions. For alcohol research, it is important to understand the dynamics of ethanol metabolism, particularly in the brain and in other organs, and to simultaneously measure the concentrations of ethanol and its metabolites - acetaldehyde and acetate. Our work provides a comprehensive characterization of three microdialysis probes, in terms of recovery rates and backpressure, allowing for interpretation and optimization of experimental procedures. In vivo experiments were performed to measure the time course concentration of ethanol, acetaldehyde, and acetate in the rat brain dialysate. Additionally, the combination of in vitro experimental results with numerical simulations enabled us to calculate diffusion coefficients of molecules in the microdialysis membranes and study the extent of the depletion effect caused by continuous microdialysis sampling, thus providing additional insights for probe selection and data interpretation.


Assuntos
Encéfalo , Etanol , Microdiálise , Microdiálise/métodos , Etanol/metabolismo , Etanol/análise , Etanol/farmacocinética , Animais , Ratos , Encéfalo/metabolismo , Acetaldeído/análise , Acetaldeído/metabolismo , Masculino , Acetatos/metabolismo , Acetatos/farmacocinética
5.
Artigo em Inglês | MEDLINE | ID: mdl-37051259

RESUMO

Continuous measurement of the concentrations of ethanol and its metabolites, acetaldehyde and acetic acid, in vivo is important for the alcohol research community. Most studies only measure ethanol because accurate measurement of all three compounds is challenging. Measurement inside tissue/brain is done using a microdialysis technique, followed by off-line analysis using gas chromatography (GC). To realize simultaneous measurement of ethanol and its metabolites, one can take advantage of infrared (IR) spectroscopy as a rapid and reagent-free method. Here we report a feasibility study of using IR spectroscopy to simultaneously measure ethanol, acetaldehyde and acetic acid in aqueous solution. Different concentrations in transmission mode at different optical pathlengths and using attenuated total reflectance (ATR) were measured. In vitro microdialysis was performed on the mixture of the three compounds, and the collected sample was measured using IR to demonstrate the capability of quantifying the concentrations of the three analytes simultaneously. Lastly, to overcome the limitations of the microdialysis technique, direct measurement using evanescent-field IR spectroscopy can be a potential alternative. A hydrophobic polymer coating that adsorbs ethanol and excludes water, could improve sensitivity. Sorption kinetics in polymethyl methacrylate (PMMA) and polydimethylsiloxane (PDMS) coatings on an ATR crystal were measured. Both polymers demonstrate preferential adsorption of ethanol over water.

6.
Acta Biomater ; 145: 316-328, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35367381

RESUMO

Endothelium lining interior surface of blood vessels experiences various physical stimulations in vivo. Its physical properties, especially elasticity, play important roles in regulating the physiological functions of vascular systems. In this paper, an integrated approach is developed to characterize the anisotropic elasticity of the endothelium under physiological-level fluid shear stress. A pressure sensor-embedded microfluidic device is developed to provide fluid shear stress on the perfusion-cultured endothelium and to measure transverse in-plane elasticities in the directions parallel and perpendicular to the flow direction. Biological atomic force microscopy (Bio-AFM) is further exploited to measure the vertical elasticity of the endothelium in its out-of-plane direction. The results show that the transverse elasticity of the endothelium in the direction parallel to the perfusion culture flow direction is about 70% higher than that in the direction perpendicular to the flow direction. Moreover, the transverse elasticities of the endothelium are estimated to be approximately 120 times larger than the vertical one. The results indicate the effects of fluid shear stress on the transverse elasticity anisotropy of the endothelium, and the difference between the elasticities in transverse and vertical directions. The quantitative measurement of the endothelium anisotropic elasticity in different directions at the tissue level under the fluid shear stress provides biologists insightful information for the advanced vascular system studies from biophysical and biomaterial viewpoints. STATEMENT OF SIGNIFICANCE: In this paper, we take advantage an integrated approach combining microfluidic devices and biological atomic force microscopy (Bio-AFM) to characterize anisotropic elasticities of endothelia with and without fluidic shear stress application. The microfluidic devices are exploited to conduct perfusion cell culture of the endothelial cells, and to estimate the in-plane elasticities of the endothelium in the direction parallel and perpendicular to the shear stress. In addition, the Bio-AFM is utilized for characterization of the endothelium morphology and vertical elasticity. The measurement results demonstrate the very first anisotropic elasticity quantification of the endothelia. Furthermore, the study provides insightful information bridging the microscopic sing cell and macroscopic organ level studies, which can greatly help to advance vascular system research from material perspective.


Assuntos
Células Endoteliais , Endotélio Vascular , Anisotropia , Elasticidade , Endotélio , Estresse Mecânico
7.
ACS Omega ; 7(47): 43130-43138, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36467938

RESUMO

Adsorption-desorption behaviors of polar and nonpolar volatile organic compounds (VOCs), namely, isopropanol and nonane, on mesoporous silica were studied using optical reflectance spectroscopy. Mesoporous silica was fabricated via electrochemical etching of silicon and subsequent thermal oxidation, resulting in an average pore diameter of 11 nm and a surface area of approximately 493 m2/g. The optical thickness of the porous layer, which is proportional to the number of adsorbed molecules, was measured using visible light reflectance interferometry. In situ adsorption and desorption kinetics were obtained for various mesoporous silica temperatures ranging from 10 to 70 °C. Sorption as a function of temperature was acquired for isopropanol and nonane. Sequential adsorption measurements of isopropanol and nonane were performed and showed that, when one VOC is introduced immediately following another, the second VOC displaces the first one regardless of the VOC's polarity and the strength of its interaction with the silica surface.

8.
Sci Rep ; 9(1): 8234, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31160651

RESUMO

Proliferation and migration of endothelial cells play an important role in many biological activities, and they can be regulated by various microenvironmental factors. In this paper, a novel microfluidic collective cell migration assay is developed to study endothelial cell migration and proliferation under combinations of three oxygen conditions: normoxia, oxygen gradient, and hypoxia and three medium compositions: normal growth medium, the medium with cytochalasin-D for actin polymerization inhibition, and with YC-1 for hypoxia-inducible factor (HIF) inhibition. The microfluidic device designed in the paper allows cell patterns formed with consistent dimensions using laminar flow patterning. In addition, stable oxygen gradients can be generated within the device by a spatially confined chemical reaction method. The device can be operated in conventional cell incubators with minimal chemical reagents and instrumentation for practical applications. The results show directional collective cell migration of the endothelial cells under the oxygen gradients for all the medium compositions. The directional behavior has never been discussed before, and indicates critical roles of oxygen gradients in guiding endothelial cell migration during various biological activities. The developed assay provides a practical yet powerful tool for further in vitro study of endothelial cell behaviors under various physiological microenvironments.


Assuntos
Ensaios de Migração Celular , Movimento Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/citologia , Microfluídica , Oxigênio/farmacologia , Preparações Farmacêuticas/metabolismo , Proliferação de Células/efeitos dos fármacos , Fluorescência , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA