Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 17(7): e1009654, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34242211

RESUMO

It is a conventionally held dogma that the genetic basis underlying development is conserved in a long evolutionary time scale. Ample experiments based on mutational, biochemical, functional, and complementary knockdown/knockout approaches have revealed the unexpectedly important role of recently evolved new genes in the development of Drosophila. The recent progress in the genome-wide experimental testing of gene effects and improvements in the computational identification of new genes (< 40 million years ago, Mya) open the door to investigate the evolution of gene essentiality with a phylogenetically high resolution. These advancements also raised interesting issues in techniques and concepts related to phenotypic effect analyses of genes, particularly of those that recently originated. Here we reported our analyses of these issues, including reproducibility and efficiency of knockdown experiment and difference between RNAi libraries in the knockdown efficiency and testing of phenotypic effects. We further analyzed a large data from knockdowns of 11,354 genes (~75% of the Drosophila melanogaster total genes), including 702 new genes (~66% of the species total new genes that aged < 40 Mya), revealing a similarly high proportion (~32.2%) of essential genes that originated in various Sophophora subgenus lineages and distant ancestors beyond the Drosophila genus. The transcriptional compensation effect from CRISPR knockout were detected for highly similar duplicate copies. Knockout of a few young genes detected analogous essentiality in various functions in development. Taken together, our experimental and computational analyses provide valuable data for detection of phenotypic effects of genes in general and further strong evidence for the concept that new genes in Drosophila quickly evolved essential functions in viability during development.


Assuntos
Evolução Molecular , Duplicação Gênica/genética , Genes Essenciais/genética , Animais , Evolução Biológica , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Técnicas de Silenciamento de Genes/métodos , Genômica , Genótipo , Modelos Genéticos , Mutação , Fenótipo , Filogenia , Reprodutibilidade dos Testes
2.
Genome Biol Evol ; 16(6)2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38748819

RESUMO

The origin and fixation of evolutionarily young genes is a fundamental question in evolutionary biology. However, understanding the origins of newly evolved genes arising de novo from noncoding genomic sequences is challenging. This is partly due to the low likelihood that several neutral or nearly neutral mutations fix prior to the appearance of an important novel molecular function. This issue is particularly exacerbated in large effective population sizes where the effect of drift is small. To address this problem, we propose a regulation-focused, cultivator model for de novo gene evolution. This cultivator-focused model posits that each step in a novel variant's evolutionary trajectory is driven by well-defined, selectively advantageous functions for the cultivator genes, rather than solely by the de novo genes, emphasizing the critical role of genome organization in the evolution of new genes.


Assuntos
Evolução Molecular , Modelos Genéticos , Mutação , Humanos , Seleção Genética
3.
bioRxiv ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38746255

RESUMO

Spermatogenesis is a key developmental process underlying the origination of newly evolved genes. However, rapid cell type-specific transcriptomic divergence of the Drosophila germline has posed a significant technical barrier for comparative single-cell RNA-sequencing (scRNA-Seq) studies. By quantifying a surprisingly strong correlation between species-and cell type-specific divergence in three closely related Drosophila species, we apply a simple statistical procedure to identify a core set of 198 genes that are highly predictive of cell type identity while remaining robust to species-specific differences that span over 25-30 million years of evolution. We then utilize cell type classifications based on the 198-gene set to show how transcriptional divergence in cell type increases throughout spermatogenic developmental time, contrasting with traditional hourglass models of whole-organism development. With these cross-species cell type classifications, we then investigate the influence of genome organization on the molecular evolution of spermatogenesis vis-a-vis transcriptional bursting. We first demonstrate how mechanistic control of pre-meiotic transcription is achieved by altering transcriptional burst size while post-meiotic control is exerted via altered bursting frequency. We then report how global differences in autosomal vs. X chromosomal transcription likely arise in a developmental stage preceding full testis organogenesis by showing evolutionarily conserved decreases in X-linked transcription bursting kinetics in all examined somatic and germline cell types. Finally, we provide evidence supporting the cultivator model of de novo gene origination by demonstrating how the appearance of newly evolved testis-specific transcripts potentially provides short-range regulation of the transcriptional bursting properties of neighboring genes during key stages of spermatogenesis.

4.
Biosystems ; 222: 104791, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36244511

RESUMO

We introduce a novel framework for exploring the evolutionary consequences of phenotypic plasticity (adaptive and non-adaptive) integrating both genic and epigenetic effects on phenotype via stochastic differential equations and in-silico selection. In accordance with the most significant results derived from prior models, we demonstrate how plasticity is differentially favored when subjected to small vs large environmental shifts, how plasticity is transiently favorable while accommodating a new environment, and how plasticity decreases during epochs where the environment remains stable (canalization). In contrast to these models, however, by allowing the same phenotypic value to be produced via two different paths, i.e. deterministic, genic, vs stochastic, epigenetic mechanisms, we demonstrate when genic contributions alone cannot produce an optimal phenotype, plastic, epigenetic contributions will instead fully accommodate new environments, allowing for both adaptive and non-adaptive plasticity to evolve. Furthermore, we show that while rates of phenotypic accommodation are relatively constant under a wide range of selective conditions, selection will favor the most efficient route to adaptation: deterministic, genic response, or stochastic, plastic response. As a result, plasticity may evolve or canalization may occur within a given epoch depending on the relative mutation rate of genic and epigenetic contributions to phenotype, highlighting the importance of genetic conflict on the evolution of plasticity.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Adaptação Fisiológica/genética , Fenótipo , Epigênese Genética , Seleção Genética
5.
Sci China Life Sci ; 62(4): 594-608, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30919280

RESUMO

We analyze the global structure and evolution of human gene coexpression networks driven by new gene integration. When the Pearson correlation coefficient is greater than or equal to 0.5, we find that the coexpression network consists of 334 small components and one "giant" connected subnet comprising of 6317 interacting genes. This network shows the properties of power-law degree distribution and small-world. The average clustering coefficient of younger genes is larger than that of the elderly genes (0.6685 vs. 0.5762). Particularly, we find that the younger genes with a larger degree also show a property of hierarchical architecture. The younger genes play an important role in the overall pivotability of the network and this network contains few redundant duplicate genes. Moreover, we find that gene duplication and orphan genes are two dominant evolutionary forces in shaping this network. Both the duplicate genes and orphan genes develop new links through a "rich-gets-richer" mechanism. With the gradual integration of new genes into the ancestral network, most of the topological structure features of the network would gradually increase. However, the exponent of degree distribution and modularity coefficient of the whole network do not change significantly, which implies that the evolution of coexpression networks maintains the hierarchical and modular structures in human ancestors.


Assuntos
Evolução Molecular , Redes Reguladoras de Genes/genética , Análise por Conglomerados , Duplicação Gênica , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Modelos Genéticos , Seleção Genética
6.
Elife ; 62017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28686160

RESUMO

Circadian rhythms are biological oscillations that schedule daily changes in physiology. Outside the laboratory, circadian clocks do not generally free-run but are driven by daily cues whose timing varies with the seasons. The principles that determine how circadian clocks align to these external cycles are not well understood. Here, we report experimental platforms for driving the cyanobacterial circadian clock both in vivo and in vitro. We find that the phase of the circadian rhythm follows a simple scaling law in light-dark cycles, tracking midday across conditions with variable day length. The core biochemical oscillator comprised of the Kai proteins behaves similarly when driven by metabolic pulses in vitro, indicating that such dynamics are intrinsic to these proteins. We develop a general mathematical framework based on instantaneous transformation of the clock cycle by external cues, which successfully predicts clock behavior under many cycling environments.


Assuntos
Relógios Circadianos , Cianobactérias/fisiologia , Cianobactérias/efeitos da radiação , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Proteínas de Bactérias/metabolismo , Escuridão , Luz , Modelos Teóricos
7.
Phys Rev E ; 93(6): 062127, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27415228

RESUMO

We investigate the geometric structure of a nonequilibrium process and its geodesic solutions. By employing an exactly solvable model of a driven dissipative system (generalized nonautonomous Ornstein-Uhlenbeck process), we compute the time-dependent probability density functions (PDFs) and investigate the evolution of this system in a statistical metric space where the distance between two points (the so-called information length) quantifies the change in information along a trajectory of the PDFs. In this metric space, we find a geodesic for which the information propagates at constant speed, and demonstrate its utility as an optimal path to reduce the total time and total dissipated energy. In particular, through examples of physical realizations of such geodesic solutions satisfying boundary conditions, we present a resonance phenomenon in the geodesic solution and the discretization into cyclic geodesic solutions. Implications for controlling population growth are further discussed in a stochastic logistic model, where a periodic modulation of the diffusion coefficient and the deterministic force by a small amount is shown to have a significant controlling effect.

8.
PLoS One ; 10(7): e0132397, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26203903

RESUMO

There has been increasing awareness in the wider biological community of the role of clonal phenotypic heterogeneity in playing key roles in phenomena such as cellular bet-hedging and decision making, as in the case of the phage-λ lysis/lysogeny and B. Subtilis competence/vegetative pathways. Here, we report on the effect of stochasticity in growth rate, cellular memory/intermittency, and its relation to phenotypic heterogeneity. We first present a linear stochastic differential model with finite auto-correlation time, where a randomly fluctuating growth rate with a negative average is shown to result in exponential growth for sufficiently large fluctuations in growth rate. We then present a non-linear stochastic self-regulation model where the loss of coherent self-regulation and an increase in noise can induce a shift from bounded to unbounded growth. An important consequence of these models is that while the average change in phenotype may not differ for various parameter sets, the variance of the resulting distributions may considerably change. This demonstrates the necessity of understanding the influence of variance and heterogeneity within seemingly identical clonal populations, while providing a mechanism for varying functional consequences of such heterogeneity. Our results highlight the importance of a paradigm shift from a deterministic to a probabilistic view of clonality in understanding selection as an optimization problem on noise-driven processes, resulting in a wide range of biological implications, from robustness to environmental stress to the development of drug resistance.


Assuntos
Evolução Biológica , Células Clonais/citologia , Modelos Biológicos , Fenótipo , Processos Estocásticos , Resistencia a Medicamentos Antineoplásicos , Aptidão Genética , Humanos , Terapia Neoadjuvante , Neoplasias/patologia , Neoplasias/terapia , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Dinâmica não Linear , Distribuição Normal , Saccharomyces cerevisiae/crescimento & desenvolvimento , Seleção Genética , Fatores de Tempo
9.
PLoS One ; 8(12): e82125, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24349199

RESUMO

Although triple negative breast cancers (TNBC) are the most aggressive subtype of breast cancer, they currently lack targeted therapies. Because this classification still includes a heterogeneous collection of tumors, new tools to classify TNBCs are urgently required in order to improve our prognostic capability for high risk patients and predict response to therapy. We previously defined a gene expression signature, RKIP Pathway Metastasis Signature (RPMS), based upon a metastasis-suppressive signaling pathway initiated by Raf Kinase Inhibitory Protein (RKIP). We have now generated a new BACH1 Pathway Metastasis gene signature (BPMS) that utilizes targets of the metastasis regulator BACH1. Specifically, we substituted experimentally validated target genes to generate a new BACH1 metagene, developed an approach to optimize patient tumor stratification, and reduced the number of signature genes to 30. The BPMS significantly and selectively stratified metastasis-free survival in basal-like and, in particular, TNBC patients. In addition, the BPMS further stratified patients identified as having a good or poor prognosis by other signatures including the Mammaprint® and Oncotype® clinical tests. The BPMS is thus complementary to existing signatures and is a prognostic tool for high risk ER-HER2- patients. We also demonstrate the potential clinical applicability of the BPMS as a single sample predictor. Together, these results reveal the potential of this pathway-based BPMS gene signature to identify high risk TNBC patients that can respond effectively to targeted therapy, and highlight BPMS genes as novel drug targets for therapeutic development.


Assuntos
Transcriptoma , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Linhagem Celular Tumoral , Estudos de Coortes , Intervalo Livre de Doença , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Metástase Neoplásica , Recidiva Local de Neoplasia/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Proteína de Ligação a Fosfatidiletanolamina/genética , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Prognóstico , Reprodutibilidade dos Testes , Transdução de Sinais/genética , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA