Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Med ; 29(1): 159, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996782

RESUMO

BACKGROUND: Delay in type II alveolar epithelial cell (AECII) regeneration has been linked to higher mortality in patients with acute respiratory distress syndrome (ARDS). However, the interaction between Doublecortin-like kinase 1 (DCLK1) and the Hippo signaling pathway in ARDS-associated AECII differentiation remains unclear. Therefore, the objective of this study was to understand the role of the DCLK1/Hippo pathway in mediating AECII differentiation in ARDS. MATERIALS AND METHODS: AECII MLE-12 cells were exposed to 0, 0.1, or 1 µg/mL of lipopolysaccharide (LPS) for 6 and 12 h. In the mouse model, C57BL/6JNarl mice were intratracheally (i.t.) injected with 0 (control) or 5 mg/kg LPS and were euthanized for lung collection on days 3 and 7. RESULTS: We found that LPS induced AECII markers of differentiation by reducing surfactant protein C (SPC) and p53 while increasing T1α (podoplanin) and E-cadherin at 12 h. Concurrently, nuclear YAP dynamic regulation and increased TAZ levels were observed in LPS-exposed AECII within 12 h. Inhibition of YAP consistently decreased cell levels of SPC, claudin 4 (CLDN-4), galectin 3 (LGALS-3), and p53 while increasing transepithelial electrical resistance (TEER) at 6 h. Furthermore, DCLK1 expression was reduced in isolated human AECII of ARDS, consistent with the results in LPS-exposed AECII at 6 h and mouse SPC-positive (SPC+) cells after 3-day LPS exposure. We observed that downregulated DCLK1 increased p-YAP/YAP, while DCLK1 overexpression slightly reduced p-YAP/YAP, indicating an association between DCLK1 and Hippo-YAP pathway. CONCLUSIONS: We conclude that DCLK1-mediated Hippo signaling components of YAP/TAZ regulated markers of AECII-to-AECI differentiation in an LPS-induced ARDS model.


Assuntos
Via de Sinalização Hippo , Síndrome do Desconforto Respiratório , Animais , Humanos , Camundongos , Células Epiteliais Alveolares/metabolismo , Diferenciação Celular , Quinases Semelhantes a Duplacortina , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo
2.
Exp Cell Res ; 417(2): 113219, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35643179

RESUMO

Induction of differentiation sensitizes chronic myeloid leukemia (CML) cells to the BCR-ABL inhibitor imatinib by mechanisms that remain unknown. We previously identified the BCR-ABL downstream effector CD69 which inhibits imatinib-induced CML cell differentiation. Herein, we found that the erythroid differentiation inducers activin A and aclacinomycin A induced expression of erythroid markers (α-globin, ζ-globin, GATA-1, and glycophorin A) and simultaneously reduced CD69 levels in K562 CML cells. Blockade of p38MAPK by SB203580 and shRNA eliminated the inhibitory effect of activin A on the promoter, mRNA, and protein levels and positive cell population of CD69. CD69 overexpression inhibited activin A-induced erythroid marker expression. Pretreatment of K562 cells with activin A to induce differentiation followed by a subtoxic concentration of imatinib caused growth inhibition and apoptosis that was reduced by CD69 overexpression. Activin A also reduced the expression of CD69's potential downstream molecule metallothionein 2A (MT2A) via p38MAPK. MT2A-knockdown reduced CD69 inhibition of activin A-induced erythroid marker expression. Furthermore, MT2A-knockdown reduced CD69 inhibition of activin A-imatinib sequential treatment-mediated growth inhibition and apoptosis in K562 and BCR-ABL-expressing CD34+ cells. These results suggest that CD69 inhibits activin A induction of erythroid differentiation-mediated CML cell sensitivity to imatinib via MT2A. Therefore, activin A induction of erythroid differentiation sensitizes BCR-ABL-positive cells to imatinib by downregulating the erythroid differentiation suppressors CD69 and MT2A.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Proteínas Quinases p38 Ativadas por Mitógeno , Ativinas , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Apoptose , Diferenciação Celular , Resistencia a Medicamentos Antineoplásicos , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Mesilato de Imatinib/farmacologia , Células K562 , Lectinas Tipo C/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Metalotioneína , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
Int J Mol Sci ; 23(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36012176

RESUMO

Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality in chronic lung disease patients throughout the world. Mesenchymal stem cells (MSCs) have been shown to regulate immunomodulatory, anti-inflammatory, and regenerative responses. However, the effects of human-umbilical-cord-derived mesenchymal stem cells (hUC-MSCs) on the lung pathophysiology of COPD remain unclear. We aimed to investigate the role of hUC-MSCs in emphysema severity and Yes-associated protein (Yap) phosphorylation (p-Yap) in a porcine-pancreatic-elastase (PPE)-induced emphysema model. We observed that the emphysema percentages (normalized to the total lung volume) measured by chest computed tomography (CT) and exercise oxygen desaturation were significantly reduced by hUC-MSCs at 107 cells/kg body weight (BW) via intravenous administration in emphysematous mice (p < 0.05). Consistently, the emphysema index, as assessed by the mean linear intercept (MLI), significantly decreased with hUC-MSC administration at 3 × 106 and 107 cells/kg BW (p < 0.05). Changes in the lymphocytes, monocytes, and splenic cluster of differentiation 4-positive (CD4+) lymphocytes by PPE were significantly reversed by hUC-MSC administration in emphysematous mice (p < 0.05). An increasing neutrophil/lymphocyte ratio was reduced by hUC-MSCs at 3 × 106 and 107 cells/kg BW (p < 0.05). The higher levels of tumor necrosis factor (TNF)-α, keratinocyte chemoattractant (KC), and lactate dehydrogenase (LDH) in bronchoalveolar lavage fluid (BALF) were significantly decreased by hUC-MSC administration (p < 0.05). A decreasing p-Yap/Yap ratio in type II alveolar epithelial cells (AECII) of mice with PPE-induced emphysema was significantly increased by hUC-MSCs (p < 0.05). In conclusion, the administration of hUC-MSCs improved multiple pathophysiological features of mice with PPE-induced emphysema. The effectiveness of the treatment of pulmonary emphysema with hUC-MSCs provides an essential and significant foundation for future clinical studies of MSCs in COPD patients.


Assuntos
Enfisema , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Animais , Enfisema/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Elastase Pancreática/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/terapia , Suínos , Cordão Umbilical
4.
Immunology ; 156(2): 199-212, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30418664

RESUMO

Dendritic cells (DCs) are professional antigen-presenting cells that play a key role in directing T-cell responses. Regulatory T (Treg) cells possess an immunosuppressive ability to inhibit effector T-cell responses, and Notch ligand Jagged1 (Jag1) is implicated in Treg cell differentiation. In this study, we evaluated whether bone marrow-derived DCs genetically engineered to express Jag1 (Jag1-DCs) would affect the maturation and function of DCs in vitro and further investigated the immunoregulatory ability of Jag1-DCs to manipulate T helper type 2 (Th2) -mediated allergic asthma in mice. We produced Jag1-DCs by adenoviral transduction. Overexpression of Jag1 by ovalbumin (OVA) -stimulated Jag1-DCs exhibited increased expression of programmed cell death ligand 1 (PD-L1) and OX40L molecules. Subsequently, co-culture of these OVA-pulsed Jag1-DCs with allogeneic or syngeneic CD4+ T cells promoted the generation of Foxp3+ Treg cells, and blocking PD-L1 using specific antibodies partially reduced Treg cell expansion. Furthermore, adoptive transfer of OVA-pulsed Jag1-DCs to mice with OVA-induced asthma reduced allergen-specific immunoglobulin E production, airway hyperresponsiveness, airway inflammation, and secretion of Th2-type cytokines (interleukin-4, interleukin-5, and interleukin-13). Notably, an increased number of Foxp3+ Treg cells associated with enhanced levels of transforming growth factor-ß production was observed in Jag1-DC-treated mice. These data indicate that transgenic expression of Jag1 by DCs promotes induction of Foxp3+ Treg cells, which ameliorated Th2-mediated allergic asthma in mice. Our study supports an attractive strategy to artificially generate immunoregulatory DCs and provides a novel approach for manipulating Th2 cell-driven deleterious immune diseases.


Assuntos
Adenoviridae , Asma/imunologia , Células Dendríticas/imunologia , Expressão Gênica , Proteína Jagged-1/imunologia , Linfócitos T Reguladores/imunologia , Células Th2/imunologia , Animais , Asma/genética , Asma/terapia , Citocinas/genética , Citocinas/imunologia , Células Dendríticas/patologia , Proteína Jagged-1/genética , Camundongos , Camundongos Endogâmicos BALB C , Linfócitos T Reguladores/patologia , Células Th2/patologia , Transdução Genética
5.
Clin Immunol ; 187: 58-67, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29038036

RESUMO

Dendritic cells (DCs) are professional antigen-presenting cells, and Notch ligand Delta-like-1 (DLL1) on DCs was implicated in type 1T helper (Th1) differentiation. In this study, we produced genetically engineered bone marrow-derived DCs that expressed DLL1 (DLL1-DCs) by adenoviral transduction. DLL1-DCs exerted a fully mature phenotype, and had positive effects on expression levels of interleukin (IL)-12 and costimulatory molecules. Coculture of allogeneic T cells with ovalbumin (OVA)-pulsed DLL1-DCs enhanced T cell proliferative responses and promoted Th1 cell differentiation. Furthermore, adoptive transfer of OVA-stimulated DLL1-DCs into asthmatic mice alleviated the cardinal features of allergic asthma, including immunoglobulin E (IgE) production, airway hyperresponsiveness (AHR), airway inflammation, and production of Th2-type cytokines. Notably, enhanced levels of the Th1-biased IgG2a response and interferon (IFN)-γ production were observed in these mice. Taken together, these data indicate that DLL1-DCs promoted Th1 cell development to alter the Th1/Th2 ratio and ameliorate Th2-mediated allergic asthma in mice.


Assuntos
Asma/imunologia , Células Dendríticas/imunologia , Hipersensibilidade/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Células Th2/imunologia , Transferência Adotiva , Animais , Proteínas de Ligação ao Cálcio , Diferenciação Celular , Proliferação de Células , Regulação para Baixo , Feminino , Imunoglobulina E/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Interleucina-12/imunologia , Ativação Linfocitária , Camundongos , Ovalbumina , Células Th1/imunologia
6.
Mediators Inflamm ; 2018: 9541459, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29849502

RESUMO

Much evidence has indicated that matrix metalloproteinases (MMPs) participate in the progression of neuroinflammatory disorders. The present study was undertaken to investigate the inhibitory effect and mechanism of the antipsychotic haloperidol on MMP activation in the stimulated THP-1 monocytic cells. Haloperidol exerted a strong inhibition on tumor necrosis factor- (TNF-) α-induced MMP-9 gelatinolysis of THP-1 cells. A concentration-dependent inhibitory effect of haloperidol was observed in TNF-α-induced protein and mRNA expression of MMP-9. On the other hand, haloperidol slightly affected cell viability and tissue inhibition of metalloproteinase-1 levels. It significantly inhibited the degradation of inhibitor-κB-α (IκBα) in activated cells. Moreover, it suppressed activated nuclear factor-κB (NF-κB) detected by a mobility shift assay, NF-κB reporter gene, and chromatin immunoprecipitation analyses. Consistent with NF-κB inhibition, haloperidol exerted a strong inhibition of lipopolysaccharide- (LPS-) induced MMP-9 gelatinolysis but not of transforming growth factor-ß1-induced MMP-2. In in vivo studies, administration of haloperidol significantly attenuated LPS-induced intracerebral MMP-9 activation of the brain homogenate and the in situ in C57BL/6 mice. In conclusion, the selective anti-MMP-9 activation of haloperidol could possibly involve the inhibition of the NF-κB signal pathway. Hence, it was found that haloperidol treatment may represent a bystander of anti-MMP actions for its conventional psychotherapy.


Assuntos
Haloperidol/farmacologia , Metaloproteinase 9 da Matriz/metabolismo , NF-kappa B/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Imunoprecipitação da Cromatina , Humanos , Proteínas I-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos
7.
Invest New Drugs ; 35(4): 427-435, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28349229

RESUMO

Chronic myeloid leukemia (CML) is a hematopoietic malignancy caused by the constitutive activation of Bcr-Abl tyrosine kinase. The Bcr-Abl inhibitor imatinib and other second-generation tyrosine kinase inhibitors such as dasatinib and nilotinib have remarkable efficacy in CML treatment. However, gene mutation-mediated drug resistance remains a critical problem. Among point mutations, the Bcr-Abl T315I mutation confers resistance to these Bcr-Abl inhibitors. Previously, we have synthesized the compound (1-methyl-1H-indol-5-yl)-(3,4,5-trimethoxy-phenyl)-methanone (MPT0B002) as a novel microtubule inhibitor. In this study, we evaluated its effects on the proliferation, cell cycle, and apoptosis of K562 CML cells and BaF3 cells expressing either wild-type Bcr-Abl (BaF3/p210) or T315I-mutated Bcr-Abl (BaF3/T315I). MPT0B002 inhibited cell viability in a dose-dependent manner in these cells but did not affect the proliferation of human umbilical vein endothelial cells. It disrupted tubulin polymerization and arrested cell cycle at the G2/M phase. Treatment with MPT0B002 induced apoptosis, and this induction was associated with increased levels of cleaved caspase-3 and cleaved PARP. Furthermore, MPT0B002 can downregulate both Bcr-Abl and Bcr-Abl-T315I mRNA expressions and protein levels and the downstream signaling pathways. Taken together, our findings suggest that MPT0B002 may be considered a promising compound to downregulate not only wild type Bcr-Abl but also the T315I mutant to overcome Bcr-Abl-T315I mutation-mediated resistance in CML cells.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Mesilato de Imatinib/farmacologia , Indóis/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Moduladores de Tubulina/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Células Cultivadas , Regulação para Baixo , Proteínas de Fusão bcr-abl/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Mutação , Tubulina (Proteína)/metabolismo
8.
Apoptosis ; 21(9): 1008-18, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27344662

RESUMO

Imatinib, a Bcr-Abl-specific inhibitor, is effective for treating chronic myeloid leukemia (CML), but drug resistance has emerged for this disease. In this study, we synthesized a novel tubulin polymerization inhibitor, MPT0B206 (N-[1-(4-methoxy-benzenesulfonyl)-2,3-dihydro-1H-indol-7-yl]-formamide), and demonstrated its apoptotic effect and mechanism in imatinib-sensitive K562 and imatinib-resistant K562R CML cells. Western blotting and immunofluorescence microscopy showed that MPT0B206 induced microtubule depolymerization in K562 and K562R cells. MPT0B206 inhibited the growth of these cells in a concentration- and time-dependent manner. It did not affect the viability of normal human umbilical vein endothelial cells. MPT0B206 induced G2/M cell cycle arrest and the appearance of the mitotic marker MPM-2 in K562 and K562R cells, which is associated with the upregulation of cyclin B1 and the dephosphorylation of Cdc2. Treatment of K562 and K562R cells with MPT0B206 induced apoptosis and reduced the protein levels of procaspase-9 and procaspase-3 and increased caspase-3 activity and PARP cleavage. MPT0B206 also reduced the levels of the antiapoptotic proteins Mcl-1 and Bcl-2 and increased the level of the apoptotic protein Bax. Additional experiments showed that MPT0B206 markedly downregulated Bcr-Abl mRNA expression and total and phosphorylated Bcr-Abl protein levels and inhibited the phosphorylation of its downstream proteins STAT5, MAPK, and AKT, and the protein level of c-Myc in K562 and K562R cells. Furthermore, MPT0B206 triggered viability reduction and apoptosis in CML cells carrying T315I-mutated Bcr-Abl. Together, these results suggest that MPT0B206 is a promising alternative for treating imatinib-resistant CML.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas de Fusão bcr-abl/genética , Mesilato de Imatinib/farmacologia , Indóis/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Sulfonas/farmacologia , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/fisiopatologia , Polimerização/efeitos dos fármacos , Tubulina (Proteína)/química
9.
Tumour Biol ; 37(5): 6065-72, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26608370

RESUMO

Acute myeloid leukemia (AML) is a hematological malignant disorder. AML cells are not susceptible to chemotherapeutic drugs because of their multidrug resistance (MDR). Antitubulin agents are currently employed in cancer treatments; however, drug resistance results in treatment failures because of MDR1 expressing cancer cells. We previously synthesized a new tubulin inhibitor, 2-dimethylamino-N-[1-(4-methoxy-benzenesulfonyl)-2,3-dihydro-1H-indol-7-yl]-acetamide (MPT0B169), which inhibits AML cell proliferation by arresting cell cycle at the G2/M phase. In this study, we explored the effect of MPT0B169 on apoptosis in AML HL60 and NB4 cells and MDR1-mediated taxol-resistant HL60/TaxR cells and the underlying mechanism. MPT0B169 induced concentration- and time-dependent apoptosis in these cancer cells, as observed through annexin V/propidium iodide double staining and flow cytometry. Furthermore, DNA fragmentation analysis confirmed MPT0B169-induced apoptosis. MPT0B169 induced a loss of mitochondrial membrane potential, release of cytochrome c into the cytosol, cleavage and activation of caspase-9 and caspase-3, and consequently cleavage of poly (ADP ribose) polymerase. Western blot analysis showed that MPT0B169 markedly reduced Mcl-1 (an antiapoptotic protein) levels; however, it caused no changes in Bcl-2 or BAX (a proapoptotic protein). Knockdown of Mcl-1 using small interfering RNA (siRNA) slightly induced growth inhibition and apoptosis in the HL60 and HL60/TaxR cells. Further investigation revealed that Mcl-1 siRNA enhanced the sensitivity of HL60 and HL60/TaxR cells to MPT0B169-induced growth inhibition and apoptosis. Together, these results demonstrated that MPT0B169-induced apoptosis in nonresistant and MDR1-mediated taxol-resistant AML cells through Mcl-1 downregulation and a mitochondria-mediated pathway. MPT0B169 can overcome MDR1-mediated drug resistance in AML cells.


Assuntos
Apoptose/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda/genética , Mitocôndrias/efeitos dos fármacos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Paclitaxel/farmacologia , Sarcosina/análogos & derivados , Sulfonamidas/farmacologia , Moduladores de Tubulina/farmacologia , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Citocromos c/metabolismo , Regulação Leucêmica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HL-60 , Humanos , Leucemia Mieloide Aguda/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Sarcosina/farmacologia
10.
Pharmacol Res ; 110: 111-121, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27185659

RESUMO

Imperatorin is a furanocoumarin compound which exists in many medicinal herbs and possesses various biological activities. Herein, we investigated the antiallergic effects of imperatorin in asthmatic mice and explored the immunomodulatory actions of imperatorin on immune cells. We used a murine model of ovalbumin (OVA)-induced asthma to evaluate the therapeutic potential of imperatorin. Additionally, bone marrow-derived dendritic cells (DCs; BMDCs) were used to clarify whether imperatorin exerts an antiallergic effect through altering the ability of DCs to regulate T cells. Oral administration of imperatorin to OVA-sensitized and -challenged mice decreased serum OVA-specific immunoglobulin E (IgE) production, attenuated the airway hyperresponsiveness (AHR), and alleviated airway inflammation in a dose-dependent manner. Notably, secretions of Th2 cytokines and chemokines were reduced, and numbers of interleukin (IL)-10-producing regulatory T cells (Tregs) increased in imperatorin-treated mice. Imperatorin inhibited proinflammatory cytokines and IL-12 production but enhanced IL-10 secretion by lipopolysaccharide (LPS)-stimulated BMDCs. Compared to fully mature DCs, imperatorin-treated DCs expressed high levels of the inducible costimulatory ligand (ICOSL) and Jagged1 molecules, and had the regulatory capacity to promote the generation of IL-10-producing CD4(+) T cells in vitro. Additionally, imperatorin directly suppressed activated CD4(+) T-cell proliferation and cytokine production. Imperatorin may possess therapeutic potential against Th2-mediated allergic asthma not only via stimulating DC induction of Tregs but also via direct inhibition of Th2 cell activation. These findings provide new insights into how imperatorin affects the Th2 immune response and the development of imperatorin as a Treg-type immunomodulatory agent to treat allergic asthma.


Assuntos
Antialérgicos/farmacologia , Asma/prevenção & controle , Hiper-Reatividade Brônquica/prevenção & controle , Broncoconstrição/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Furocumarinas/farmacologia , Interleucina-10/metabolismo , Pulmão/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Células Th2/efeitos dos fármacos , Animais , Asma/imunologia , Asma/metabolismo , Asma/fisiopatologia , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/metabolismo , Hiper-Reatividade Brônquica/fisiopatologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Feminino , Imunoglobulina E/sangue , Ligante Coestimulador de Linfócitos T Induzíveis/imunologia , Ligante Coestimulador de Linfócitos T Induzíveis/metabolismo , Interleucina-10/imunologia , Proteína Jagged-1/imunologia , Proteína Jagged-1/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/fisiopatologia , Ativação Linfocitária/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ovalbumina , Fenótipo , Transdução de Sinais/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Células Th2/imunologia , Células Th2/metabolismo , Fatores de Tempo
11.
Transfusion ; 53(9): 1918-28, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23305248

RESUMO

BACKGROUND: Platelet concentrate lysates (PCLs) are increasingly used in regenerative medicine. We have developed a solvent/detergent (S/D)-treated PCL. The functional properties of this preparation should be unveiled. We hypothesized that, due to transforming growth factor-ß1 (TGF-ß1) content, PCLs may exert immunosuppressive and anti-inflammatory functions. STUDY DESIGN AND METHODS: PCL was prepared by S/D treatment, oil extraction, and hydrophobic interaction chromatography. The content of TGF-ß in PCL was determined by enzyme-linked immunosorbent assay. Cultured CD4+ T cells were used to investigate the effects of PCL on expression of transcription factor forkhead box P3 (Foxp3), the inhibition of T-cell proliferation, and cytokine production. The regulatory function of PCL-converted CD4+ T cells was analyzed by suppressive assay. The BALB/c mice were given PCL-converted CD4+ T cells before ovalbumin (OVA) sensitization and challenge using an asthma model. Inflammatory parameters, such as the level of immunoglobulin E (IgE), airway hyperresponsiveness (AHR), bronchial lavage fluid eosinophils, and cytokines were assayed. Recombinant human (rHu) TGF-ß1 was used as control. RESULTS: PCL significantly enhanced the development of CD4+Foxp3+-induced regulatory T cells (iTregs). Converted iTregs produced neither Th1 nor Th2 cytokines and inhibited normal T-cell proliferation. PCL- and rHuTGF-ß-converted CD4+ T cells prevented OVA-induced asthma. PCL- and rHuTGF-ß-modified T cells both significantly reduced expression levels of OVA-specific IgE and significantly inhibited the development of AHR, airway eosinophilia, and Th2 responses in mice. CONCLUSION: S/D-treated PCL promotes Foxp3+ iTregs and exerts immunosuppressive and anti-inflammatory properties. This finding may help to understand the clinical properties of platelet lysates.


Assuntos
Asma/terapia , Plaquetas/virologia , Linfócitos T Reguladores/imunologia , Animais , Asma/imunologia , Asma/metabolismo , Plaquetas/efeitos dos fármacos , Detergentes/farmacologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Humanos , Camundongos , Transfusão de Plaquetas , Solventes/farmacologia
12.
Int Immunopharmacol ; 121: 110473, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37331292

RESUMO

Allergic asthma is an inflammatory lung disorder, and mast cells play crucial roles in the development of this allergic disease. Norisoboldine (NOR), the major isoquinoline alkaloid present in Radix Linderae, has received considerable attention because it has anti-inflammatory effects. Herein, the aim of this study was to explore the antiallergic effects of NOR on allergic asthma in mice and mast cell activation. In a murine model of ovalbumin (OVA)-induced allergic asthma, oral administration at 5 mg/kg body weight (BW) of NOR produced strong reductions in serum OVA-specific immunoglobulin E (IgE) levels, airway hyperresponsiveness, and bronchoalveolar lavage fluid (BALF) eosinophilia, while an increase in CD4+Foxp3+ T cells of the spleen was detected. Histological studies demonstrated that NOR treatment significantly ameliorated the progression of airway inflammation including the recruitment of inflammatory cells and mucus production by decreasing levels of histamine, prostaglandin D2 (PGD2), interleukin (IL)-4, IL-5, IL-6, and IL-13 in BALF. Furthermore, our results revealed that NOR (3 âˆ¼ 30 µM) dose-dependently reduced expression of the high-affinity receptor for IgE (FcεRI) and the production of PGD2 and inflammatory cytokines (IL-4, IL-6, IL-13, and TNF-α), and also decreased degranulation of bone marrow-derived mast cells (BMMCs) activated by IgE/OVA. In addition, a similar suppressive effect on BMMC activation was observed by inhibition of the FcεRI-mediated c-Jun N-terminal kinase (JNK) signaling pathway using SP600125, a selective JNK inhibitor. Collectively, these results suggest that NOR may have therapeutic potential for allergic asthma at least in part through regulating the degranulation and the release of mediators by mast cells.


Assuntos
Alcaloides , Antialérgicos , Asma , Camundongos , Animais , Ovalbumina/metabolismo , Mastócitos , Antialérgicos/efeitos adversos , Receptores de IgE/metabolismo , Interleucina-6/metabolismo , Interleucina-13/metabolismo , Asma/induzido quimicamente , Asma/tratamento farmacológico , Asma/metabolismo , Pulmão/patologia , Alcaloides/uso terapêutico , Citocinas/metabolismo , Líquido da Lavagem Broncoalveolar , Imunoglobulina E , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças
13.
Sci Total Environ ; 898: 166340, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37591374

RESUMO

The impacts of climate change and air pollution on respiratory diseases present significant global health challenges. This review aims to investigate the effects of the interactions between these challenges focusing on respiratory diseases. Climate change is predicted to increase the frequency and intensity of extreme weather events amplifying air pollution levels and exacerbating respiratory diseases. Air pollution levels are projected to rise due to ongoing economic growth and population expansion in many areas worldwide, resulting in a greater burden of respiratory diseases. This is especially true among vulnerable populations like children, older adults, and those with pre-existing respiratory disorders. These challenges induce inflammation, create oxidative stress, and impair the immune system function of the lungs. Consequently, public health measures are required to mitigate the effects of climate change and air pollution on respiratory health. The review proposes that reducing greenhouse gas emissions contribute to slowing down climate change and lessening the severity of extreme weather events. Enhancing air quality through regulatory and technological innovations also helps reduce the morbidity of respiratory diseases. Moreover, policies and interventions aimed at improving healthcare access and social support can assist in decreasing the vulnerability of populations to the adverse health effects of air pollution and climate change. In conclusion, there is an urgent need for continuous research, establishment of policies, and public health efforts to tackle the complex and multi-dimensional challenges of climate change, air pollution, and respiratory health. Practical and comprehensive interventions can protect respiratory health and enhance public health outcomes for all.


Assuntos
Poluição do Ar , Transtornos Respiratórios , Doenças Respiratórias , Criança , Humanos , Idoso , Mudança Climática , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Doenças Respiratórias/epidemiologia , Saúde Pública
14.
Environ Sci Pollut Res Int ; 30(7): 18985-18997, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36223019

RESUMO

Physicochemical properties of nanoparticles are important in regulating nanoparticle toxicity; however, the contribution of nanoparticle charge remains unclear. The objective of this study was to investigate the pulmonary effects of inhalation of charged soot nanoparticles. We established a stably charged nanoparticle generation system for whole-body exposure in BALB/c mice, which produced positively charged, negatively charged, and neutral soot nanoparticles in a wide range of concentrations. After a 7-day exposure, pulmonary toxicity was assessed, together with proteomics analysis. The charged soot nanoparticles on average carried 1.17-1.35 electric charges, and the sizes for nanoparticles under different charging conditions were all fixed at 69 ~ 72 nm. We observed that charged soot nanoparticles induced cytotoxic LDH and increased lung permeability, with the release of 8-isoprostane and caspase-3 and systemic IL-6 in mice, especially for positively charged soot nanoparticles. Next, we observed that positive-charged soot nanoparticles upregulated Eif2, Eif4, sirtuin, mammalian target of rapamycin (mTOR), peroxisome proliferator-activated receptors (PPAR), and HIPPO-related signaling pathways in the lungs compared with negatively charged soot nanoparticles. HIF1α, sirt1, E-cadherin, and Yap were increased in mice's lungs by positively charged soot nanoparticle exposure. In conclusion, carbonaceous nanoparticles carrying electric ions, especially positive-charged, are particularly toxic when inhaled and should be of concern in terms of pulmonary health protection.


Assuntos
Nanopartículas , Fuligem , Animais , Camundongos , Fuligem/química , Pulmão , Nanopartículas/toxicidade , Nanopartículas/química , Administração por Inalação , Mamíferos
15.
Ann Med ; 55(2): 2264881, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37801626

RESUMO

This review article delves into the multifaceted relationship between climate change, air quality, and respiratory health, placing a special focus on the process of particle deposition in the lungs. We discuss the capability of climate change to intensify air pollution and alter particulate matter physicochemical properties such as size, dispersion, and chemical composition. These alterations play a significant role in influencing the deposition of particles in the lungs, leading to consequential respiratory health effects. The review paper provides a broad exploration of climate change's direct and indirect role in modifying particulate air pollution features and its interaction with other air pollutants, which may change the ability of particle deposition in the lungs. In conclusion, climate change may play an important role in regulating particle deposition in the lungs by changing physicochemistry of particulate air pollution, therefore, increasing the risk of respiratory disease development.


Climate change influences particle deposition in the lungs by modifying the physicochemical properties of particulate air pollution, thereby escalating the risk of respiratory disease development.It is crucial for healthcare providers to educate patients about the relationship between climate change and respiratory health.People with conditions such as asthma, COPD, and allergies must understand how changes in weather, air pollution, and allergens can exacerbate their symptoms.Instruction on understanding air quality indices and pollen predictions, along with recommendations on adapting everyday activities and medication regimens in response, is essential.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Mudança Climática , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Pulmão
16.
Sci Total Environ ; 861: 160586, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36455744

RESUMO

BACKGROUND: The objective of this study was to examine associations of daily averages and daily variations in ambient relative humidity (RH), temperature, and PM2.5 on the obstructive sleep apnea (OSA) severity. METHODS: A case-control study was conducted to retrospectively recruit 8628 subjects in a sleep center between January 2015 and December 2021, including 1307 control (apnea-hypopnea index (AHI) < 5 events/h), 3661 mild-to-moderate OSA (AHI of 5-30 events/h), and 3597 severe OSA subjects (AHI > 30 events/h). A logistic regression was used to examine the odds ratio (OR) of outcome variables (daily mean or difference in RH, temperature, and PM2.5 for 1, 7, and 30 days) with OSA severity (by the groups). Two-factor logistic regression models were conducted to examine the OR of RH with the daily mean or difference in temperature or PM2.5 with OSA severity. An exposure-response relationship analysis was conducted to examine the outcome variables with OSA severity in all, cold and warm seasons. RESULTS: We observed associations of mean PM2.5 and RH with respective increases of 0.04-0.08 and 0.01-0.03 events/h for the AHI in OSA patients. An increase in the daily difference of 1 % RH increased the AHI by 0.02-0.03 events/h in OSA patients. A daily PM2.5 decrease of 1 µg/m3 reduced the AHI by 0.03 events/h, whereas a daily decrease in the RH of 1 % reduced the AHI by 0.03-0.04 events/h. The two-factor model confirmed the most robust associations of ambient RH with AHI in OSA patients. The exposure-response relationship in temperature and RH showed obviously seasonal patterns with OSA severity. CONCLUSION: Short-term ambient variations in RH and PM2.5 were associated with changes in the AHI in OSA patients, especially RH in cold season. Reducing exposure to high ambient RH and PM2.5 levels may have protective effects on the AHI in OSA patients.


Assuntos
Apneia Obstrutiva do Sono , Humanos , Estações do Ano , Estudos de Casos e Controles , Estudos Retrospectivos , Umidade , Apneia Obstrutiva do Sono/epidemiologia , Material Particulado
19.
J Trop Med ; 2022: 9190333, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36420456

RESUMO

Although the deworming program has been executed since 2000, the intestinal parasitic infection (IPI) rates among primary schoolchildren (PSC) in the two provinces of the Kingdom of Eswatini investigated in 2010 remained high, reaching 32.2%. In this study, we monitored the IPI status along with the associated risk factors for PSC in two provinces-Manzini and Lubombo. After consent from their parents/guardians, a total of 316 samples collected from PSC with grades 1 to 3 from four primary schools in Manzini and Lubombo were examined by the Merthiolate-Iodine-Formaldehyde (MIF) method. In addition, demographic characteristics and risk factors acquired by questionnaire surveys were included to be statistically analyzed. The overall prevalence was 40.5% (128/316), of which the infection rate in Manzini and Lubombo was 28.8% (19/66) and 58.3% (74/140), respectively. Pathogenic protozoa had the highest infection rate of 20.6% (65/316), including Entamoeba histolytica/dispar (8.5%, 27/316), Giardia duodenalis (14.6%, 46/316), and Blastocystis hominis (9.8%, 31/316). In terms of helminth infection, the infection rate was quite low, 1.6% only, and these five infected cases included four cases of Hymenolepis nana and one case of Enterobius vermicularis infection. Present study showed that 27.8% (88/316) of PSC were infected by more than one pathogenic parasite. Personal hygiene like washing hands before a meal has a significant protection effect (OR = 0.32, 95% CI = 0.14-0.75, p=0.009). Rain or well water and the type of water supply from which they drank also showed a considerable risk factor (OR = 2.44, 95% CI = 1.25-4.79, p=0.04). The IPI rate in PSC seems unlikely changed compared to that of the previous survey conducted in 2010, especially when the pathogenic protozoan infection rate remains high. Treatment of infected PSC with appropriate medication to reduce intestinal pathogenic protozoan infection should be seriously considered by Eswatini Health Authority.

20.
Int Immunopharmacol ; 106: 108603, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35123286

RESUMO

Dendritic cells (DCs) are professional antigen-presenting cells that play a key role in directing T-cell responses and are involved in the pathogenesis of allergic asthma. Acteoside, an active phenylethanoid glycoside, is widely distributed in many medicinal plants. Herein, we explored the immunomodulatory effects of acteoside on bone marrow-derived DCs in vitro, and further investigated the immunosuppressive ability of acteoside to manipulate T helper type 2 (Th2)-mediated allergic asthma in mice. Following lipopolysaccharide activation, 50 µM of acteoside significantly reduced the production of proinflammatory mediators, including interleukin (IL)-12 and tumor necrosis factor (TNF)-α, whereas it enhanced secretion of the anti-inflammatory cytokine, IL-10, by DCs. However, these effects of acteoside on DCs were reversed by pretreatment with CH223191, an aryl hydrocarbon receptor (AhR) antagonist. Additionally, coculture of acteoside-treated DCs with CD4+ T cells promoted the generation of forkhead box P3-positive (Foxp3+) regulatory T cells (Tregs) via AhR activation. Using a murine asthma model, our results demonstrated that oral administration of 50 mg/kg of acteoside decreased levels of Th2-type cytokines, such as IL-4, IL-5, and IL-13, whereas the level of IL-10 and the frequency of CD4+Foxp3+ Tregs were augmented. Moreover, acteoside treatment markedly inhibited the elevated serum level of ovalbumin-specific immunoglobulin E, attenuated the development of airway hyperresponsiveness, and reduced inflammatory cell counts in bronchoalveolar lavage fluid. Additionally, histological results reveled that acteoside ameliorated pulmonary inflammation in asthmatic mice. Taken together, these results indicated that acteoside exhibits immunomodulatory effects on DCs and plays an anti-inflammatory role in the treatment of allergic asthma.


Assuntos
Asma , Linfócitos T Reguladores , Animais , Asma/patologia , Líquido da Lavagem Broncoalveolar , Citocinas/farmacologia , Células Dendríticas , Fatores de Transcrição Forkhead , Glucosídeos , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina , Fenóis , Receptores de Hidrocarboneto Arílico , Células Th2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA