Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(6)2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901885

RESUMO

In recent years, the use of botanical agents to prevent skin damage from solar ultraviolet (UV) irradiation has received considerable attention. Oenanthe javanica is known to exert anti-inflammatory and antioxidant activities. This study investigated photoprotective properties of an Oenanthe javanica extract (OJE) against UVB-induced skin damage in ICR mice. The extent of skin damage was evaluated in three groups: control mice with no UVB, UVB-exposed mice treated with vehicle (saline), and UVB-exposed mice treated with 1% extract. Photoprotective properties were assessed in the dorsal skin using hematoxylin and eosin staining, Masson trichrome staining, immunohistochemical staining, quantitative real-time polymerase chain reaction, and western blotting to analyze the epidermal thickness, collagen expression, and mRNA and protein levels of type I collagen, type III collagen, and interstitial collagenases, including matrix metalloproteinase (MMP)-1 and MMP-3. In addition, tumor necrosis factor (TNF)-α and cyclooxygenase (COX)-2 protein levels were also assessed. In the UVB-exposed mice treated with extract, UV-induced epidermal damage was significantly ameliorated. In this group, productions of collagen types I and III were increased, and expressions of MMP-1 and MMP-3 were decreased. In addition, TNF-α and COX-2 expressions were reduced. Based on these findings, we conclude that OJE displays photoprotective effects against UVB-induced collagen disruption and inflammation and suggest that Oenanthe javanica can be used as a natural product for the treatment of photodamaged skin.


Assuntos
Colágeno/metabolismo , Oenanthe/química , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Animais , Biomarcadores , Biópsia , Dermatite/tratamento farmacológico , Dermatite/etiologia , Dermatite/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Imuno-Histoquímica/métodos , Camundongos , Extratos Vegetais/química , Substâncias Protetoras/química
2.
Neurochem Res ; 43(3): 600-608, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29260493

RESUMO

It has been demonstrated that melatonin plays important roles in memory improvement and promotes neurogenesis in experimental animals. We examined effects of melatonin on cognitive deficits, neuronal damage, cell proliferation, neuroblast differentiation and neuronal maturation in the mouse dentate gyrus after cotreatment of scopolamine (anticholinergic agent) and melatonin. Scopolamine (1 mg/kg) and melatonin (10 mg/kg) were intraperitoneally injected for 2 and/or 4 weeks to 8-week-old mice. Scopolamine treatment induced significant cognitive deficits 2 and 4 weeks after scopolamine treatment, however, cotreatment of scopolamine and melatonin significantly improved spatial learning and short-term memory impairments. Two and 4 weeks after scopolamine treatment, neurons were not damaged/dead in the dentate gyrus, in addition, no neuronal damage/death was shown after cotreatment of scopolamine and melatonin. Ki67 (a marker for cell proliferation)- and doublecortin (a marker for neuroblast differentiation)-positive cells were significantly decreased in the dentate gyrus 2 and 4 weeks after scopolamine treatment, however, cotreatment of scopolamine and melatonin significantly increased Ki67- and doublecortin-positive cells compared with scopolamine-treated group. However, double immunofluorescence for NeuN/BrdU, which indicates newly-generated mature neurons, did not show double-labeled cells (adult neurogenesis) in the dentate gyrus 2 and 4 weeks after cotreatment of scopolamine and melatonin. Our results suggest that melatonin treatment recovers scopolamine-induced spatial learning and short-term memory impairments and restores or increases scopolamine-induced decrease of cell proliferation and neuroblast differentiation, but does not lead to adult neurogenesis (maturation of neurons) in the mouse dentate gyrus following scopolamine treatment.


Assuntos
Cognição/efeitos dos fármacos , Giro Denteado/efeitos dos fármacos , Melatonina/farmacologia , Neurogênese/efeitos dos fármacos , Escopolamina/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Giro Denteado/citologia , Masculino , Memória/efeitos dos fármacos , Camundongos , Neurogênese/fisiologia , Neurônios/efeitos dos fármacos
3.
Neurochem Res ; 42(8): 2305-2313, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28349361

RESUMO

Glycogen synthase kinase 3ß (GSK-3ß) is a key downstream protein in the PI3K/Akt pathway. Phosphorylation of serine 9 of GSK-3ß (GSK-3ß activity inhibition) promotes cell survival. In this study, we examined changes in expressions of GSK-3ß and phosphorylation of GSK-3ß (p-GSK-3ß) in the gerbil hippocampal CA1 area after 5 min of transient cerebral ischemia. GSK-3ß immunoreactivity in the CA1 area was increased in pyramidal cells at 6 h after ischemia-reperfusion. It was decreased in CA1 pyramidal cells from 12 h after ischemia-reperfusion, and hardly detected in the CA1 pyramidal cells at 5 days after ischemia-reperfusion. p-GSK-3ß immunoreactivity was slightly decreased in CA1 pyramidal cells at 6 and 12 h after ischemia-reperfusion. It was significantly increased in these cells at 1 and 2 days after ischemia-reperfusion. Five days after ischemia-reperfusion, p-GSK-3ß immunoreactivity was hardly found in CA1 pyramidal cells. However, p-GSK-3ß immunoreactivity was strongly expressed in astrocytes primarily distributed in strata oriens and radiatum. In conclusion, GSK-3ß and p-GSK-3ß were significantly changed in pyramidal cells and/or astrocytes in the gerbil hippocampal CA1 area following 5 min of transient cerebral ischemia. This finding indicates that GSK-3ß and p-GSK-3ß are closely related to delayed neuronal death.


Assuntos
Astrócitos/enzimologia , Isquemia Encefálica/enzimologia , Região CA1 Hipocampal/enzimologia , Regulação Enzimológica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/biossíntese , Células Piramidais/enzimologia , Animais , Astrócitos/química , Astrócitos/patologia , Aprendizagem da Esquiva/fisiologia , Isquemia Encefálica/patologia , Região CA1 Hipocampal/química , Região CA1 Hipocampal/patologia , Morte Celular/fisiologia , Gerbillinae , Glicogênio Sintase Quinase 3 beta/análise , Glicogênio Sintase Quinase 3 beta/genética , Masculino , Células Piramidais/química , Células Piramidais/patologia
4.
Neurochem Res ; 41(8): 1958-68, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27053301

RESUMO

Tanshinone I (TsI), a lipophilic diterpene extracted from Danshan (Radix Salvia miltiorrhizae), exerts neuroprotection in cerebrovascular diseases including transient ischemic attack. In this study, we examined effects of TsI on cell proliferation and neuronal differentiation in the subgranular zone (SGZ) of the mouse dentate gyrus (DG) using Ki-67, BrdU and doublecortin (DCX) immunohistochemistry. Mice were treated with 1 and 2 mg/kg TsI for 28 days. In the 1 mg/kg TsI-treated-group, distribution patterns of BrdU, Ki-67 and DCX positive ((+)) cells in the SGZ were similar to those in the vehicle-treated-group. However, in the 2 mg/kg TsI-treated-group, double labeled BrdU(+)/NeuN(+) cells, which are mature neurons, as well as Ki-67(+), DCX(+) and BrdU(+) cells were significantly increased compared with those in the vehicle-treated-group. On the other hand, immunoreactivities and protein levels of Wnt-3, ß-catenin and serine-9-glycogen synthase kinase-3ß (p-GSK-3ß), which are related with morphogenesis, were significantly increased in the granule cell layer of the DG only in the 2 mg/kg TsI-treated-group. Therefore, these findings indicate that TsI can promote neurogenesis in the mouse DG and that the neurogenesis is related with increases of Wnt-3, p-GSK-3ß and ß-catenin immunoreactivities.


Assuntos
Abietanos/farmacologia , Giro Denteado/metabolismo , Glicogênio Sintase Quinase 3 beta/biossíntese , Neurogênese/fisiologia , Proteína Wnt3/biossíntese , beta Catenina/biossíntese , Animais , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Giro Denteado/química , Giro Denteado/efeitos dos fármacos , Relação Dose-Resposta a Droga , Proteína Duplacortina , Glicogênio Sintase Quinase 3 beta/análise , Masculino , Camundongos , Camundongos Endogâmicos ICR , Neurogênese/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Proteína Wnt3/análise , beta Catenina/análise
5.
Neurochem Res ; 41(9): 2380-90, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27209305

RESUMO

Lacosamide is a new antiepileptic drug which is widely used to treat partial-onset seizures. In this study, we examined the neuroprotective effect of lacosamide against transient ischemic damage and expressions of antioxidant enzymes such as Zn-superoxide dismutase (SOD1), Mn-superoxide dismutase (SOD2), catalase (CAT) and glutathione peroxidase (GPX) in the hippocampal cornu ammonis 1 (CA1) region following 5 min of transient global cerebral ischemia in gerbils. We found that pre-treatment with 25 mg/kg lacosamide protected CA1 pyramidal neurons from transient global cerebral ischemic insult using hematoxylin-eosin staining and neuronal nuclear antigen immunohistochemistry. Transient ischemia dramatically changed expressions of SOD1, SOD2 and GPX, not CAT, in the CA1 pyramidal neurons. Lacosamide pre-treatment increased expressions of CAT and GPX, not SOD1 and 2, in the CA1 pyramidal neurons compared with controls, and their expressions induced by lacosamide pre-treatment were maintained after transient cerebral ischemia. In brief, pre-treatment with lacosamide protected hippocampal CA1 pyramidal neurons from ischemic damage induced by transient global cerebral ischemia, and the lacosamide-mediated neuroprotection may be closely related to increases of CAT and GPX expressions by lacosamide pre-treatment.


Assuntos
Acetamidas/farmacologia , Isquemia Encefálica/tratamento farmacológico , Catalase/metabolismo , Glutationa Peroxidase/metabolismo , Hipocampo/efeitos dos fármacos , Ataque Isquêmico Transitório/metabolismo , Fármacos Neuroprotetores/farmacologia , Animais , Antioxidantes/farmacologia , Isquemia Encefálica/metabolismo , Modelos Animais de Doenças , Gerbillinae , Hipocampo/metabolismo , Lacosamida , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Traumatismo por Reperfusão/metabolismo
6.
Neurochem Res ; 40(4): 864-72, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25676337

RESUMO

Calcium binding proteins play important roles in all aspects of neural functioning in the central nervous system. In the present study, we examined age-related changes of three different calcium binding proteins calbindin-D28k (CB), calretinin (CR) and parvalbumin (PV) immunoreactivities in the striatum of young (1 month), adult (6 months) and aged (24 months) ages in three species of rodents (mouse, rat and gerbil) using immunohistochemistry and Western blotting. Our results show that the number of CB-immunoreactive neurons was highest in the adult mouse and rat; however, in the gerbil, the number of CB-immunoreactive neurons was not significantly different from each group although the CB immunoreactivity was significantly decreased in the aged group compared with the adult group. The number of CR-immunoreactive neurons in the striatum was significantly highest in all the adult groups, and, especially, the number of CR-immunoreactive neurons and CR immunoreactivity in the aged gerbil were significantly decreased in the aged group compared with the other groups. Finally, we did not found any significant difference in the number of PV-immunoreactive neurons in the striatum with age among the three rodents. On the other hand, we found that protein levels of three calcium binding proteins in all the mouse groups were similar to the immunohistochemical data. These results indicate that the distribution pattern of calcium binding proteins is different according to age; the adult might show an apparent tendency of high expression in the striatum.


Assuntos
Fatores Etários , Calbindina 1/metabolismo , Calbindina 2/metabolismo , Corpo Estriado/metabolismo , Parvalbuminas/metabolismo , Animais , Western Blotting , Gerbillinae , Camundongos , Ratos
7.
Neurochem Res ; 39(4): 770-6, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24577837

RESUMO

Insulin-like growth factor-I (IGF-I) is a multifunctional polypeptide and has diverse effects on brain functions. In the present study, we compared IGF-I and IGF-I receptor (IGF-IR) immunoreactivity and their protein levels between the adult (postnatal month 6) and aged (postnatal month 24) mouse hippocampus and somatosensory cortex. In the adult hippocampus, IGF-I immunoreactivity was easily observed in the pyramidal cells of the stratum pyramidale in the hippocampus proper and in the granule cells of the granule cell layer of the dentate gyrus. In the adult somatosensory cortex, IGF-I immunoreactivity was easily found in the pyramidal cells of layer V. In the aged groups, IGF-I expression was dramatically decreased in the cells. Like the change of IGF-I immunoreactivity, IGF-IR immunoreactivity in the pyramidal and granule cells of the hippocampus and in the pyramidal cells of the somatosensory cortex was also markedly decreased in the aged group. In addition, both IGF-I and IGF-IR protein levels were significantly decreased in the aged hippocampus and somatosensory cortex. These results indicate that the apparent decrease of IGF-I and IGF-IR expression in the aged mouse hippocampus and somatosensory cortex may be related to age-related changes in the aged brain.


Assuntos
Envelhecimento/metabolismo , Regulação da Expressão Gênica , Hipocampo/metabolismo , Fator de Crescimento Insulin-Like I/biossíntese , Receptor IGF Tipo 1/biossíntese , Córtex Somatossensorial/metabolismo , Envelhecimento/patologia , Animais , Hipocampo/patologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Córtex Somatossensorial/patologia
8.
Neurochem Res ; 39(7): 1300-12, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24760430

RESUMO

Tanshinone I (TsI) is an important lipophilic diterpene extracted from Danshen (Radix Salvia miltiorrhizae) and has been used in Asia for the treatment of cerebrovascular diseases such as ischemic stroke. In this study, we examined the neuroprotective effect of TsI against ischemic damage and its neuroprotective mechanism in the gerbil hippocampal CA1 region (CA1) induced by 5 min of transient global cerebral ischemia. Pre-treatment with TsI protected pyramidal neurons from ischemic damage in the stratum pyramidale (SP) of the CA1 after ischemia-reperfusion. The pre-treatment with TsI increased the immunoreactivities and protein levels of anti-inflammatory cytokines [interleukin (IL)-4 and IL-13] in the TsI-treated-sham-operated-groups compared with those in the vehicle-treated-sham-operated-groups; however, the treatment did not increase the immunoreactivities and protein levels of pro-inflammatory cytokines (IL-2 and tumor necrosis factor-α). On the other hand, in the TsI-treated-ischemia-operated-groups, the immunoreactivities and protein levels of all the cytokines were maintained in the SP of the CA1 after transient cerebral ischemia. In addition, we examined that IL-4 injection into the lateral ventricle did not protect pyramidal neurons from ischemic damage. In conclusion, these findings indicate that the pre-treatment with TsI can protect against ischemia-induced neuronal death in the CA1 via the increase or maintenance of endogenous inflammatory cytokines, and exogenous IL-4 does not protect against ischemic damage.


Assuntos
Abietanos/uso terapêutico , Anti-Inflamatórios não Esteroides/uso terapêutico , Isquemia Encefálica/prevenção & controle , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Traumatismo por Reperfusão/prevenção & controle , Abietanos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Gerbillinae , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Resultado do Tratamento
9.
Neurochem Res ; 38(1): 74-81, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22987057

RESUMO

DNA methylation is a key epigenetic modification of DNA that is catalyzed by DNA methyltransferases (Dnmt). Increasing evidences suggest that DNA methylation in neurons regulates synaptic plasticity as well as neuronal network activity. In the present study, we investigated the changes in DNA methyltransferases 1 (Dnmt1) immunoreactivity and its protein levels in the gerbil hippocampal CA1 region after 5 min of transient global cerebral ischemia. CA1 pyramidal neurons were well stained with NeuN (a neuron-specific soluble nuclear antigen) antibody in the sham-group, Four days after ischemia-reperfusion (I-R), NeuN-positive ((+)) cells were significantly decreased in the stratum pyramidale (SP) of the CA1 region, and many Fluro-Jade B (a marker for neuronal degeneration)(+) cells were observed in the SP. Dnmt1 immunoreactivity was well detected in all the layers of the sham-group. Dnmt1 immunoreactivity was hardly detected only in the stratum pyramidale of the CA1 region from 4 days post-ischemia; however, at these times, Dnmt1 immunoreactivity was newly expressed in GABAergic interneurons or astrocytes in the ischemic CA1 region. In addition, the level of Dnmt1 was lowest at 4 days post-ischemia. In brief, both the Dnmt1 immunoreactivity and protein levels were distinctively decreased in the ischemic CA1 region 4 days after transient cerebral ischemia. These results indicate that the decrease of Dnmt1 expression at 4 days post-ischemia may be related to ischemia-induced delayed neuronal death.


Assuntos
Região CA1 Hipocampal/enzimologia , DNA (Citosina-5-)-Metiltransferases/biossíntese , Ataque Isquêmico Transitório/enzimologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/enzimologia , Western Blotting , Morte Celular/efeitos dos fármacos , DNA (Citosina-5-)-Metiltransferase 1 , Fluoresceínas , Técnica Indireta de Fluorescência para Anticorpo , Corantes Fluorescentes , Gerbillinae , Imuno-Histoquímica , Interneurônios/efeitos dos fármacos , Interneurônios/enzimologia , Masculino , Células Piramidais/efeitos dos fármacos , Células Piramidais/enzimologia
10.
Neurochem Res ; 38(9): 1980-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23836293

RESUMO

Apripiprazole (APZ) is well known as an atypical antipsychotic and antidepressant. In the present study, we investigated effects of APZ on cell proliferation and neuronal differentiation in the dentate gyrus (DG) of the adolescent mouse using BruU, Ki-67 and doublecortin (DCX) immunohistochemistry. BruU, Ki-67 and DCX-positive (+) cells were easily detected in the subgranular zone of the DG in the vehicle- and APZ-treated group. We found that in the 8 mg/kg APZ-treated group numbers of Ki-67(+), DCX(+) and BrdU(+)/DCX(+) cells were significantly increased compared with those in the vehicle-treated group. We also found that maturation and complexity of DCX(+) dendrites in the 8 mg/kg APZ-treated group was well improved compared with those in the vehicle-treated group. In addition, markedly decreased lipid peroxidation and increased superoxide dismutase 2 (SOD2) level were observed in the DG of the 8 mg/kg APZ-treated group. Our present findings indicate that APZ can enhance cell proliferation and neuroblast differentiation, particularly maturation and complexity of neuroblast dendrites, in the DG via decreasing lipid peroxidation and increasing SOD2 level.


Assuntos
Antipsicóticos/farmacologia , Giro Denteado/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Piperazinas/farmacologia , Quinolonas/farmacologia , Superóxido Dismutase/metabolismo , Animais , Aripiprazol , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Giro Denteado/citologia , Giro Denteado/enzimologia , Proteína Duplacortina , Masculino , Camundongos , Camundongos Endogâmicos ICR
11.
Planta Med ; 79(5): 313-21, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23412993

RESUMO

We investigated effects of caffeic acid, syringic acid, and their synthesis on transient cerebral ischemic damage in the gerbil hippocampal CA1 region. In the 10 mg/kg caffeic acid-, syringic acid-, and 20 mg/kg syringic-treated ischemia groups, we did not find any significant neuroprotection in the ischemic hippocampal CA region. In the 20 mg/kg caffeic acid- and 10 mg/kg caffeic acid-syringic acid-treated ischemia groups, moderate neuroprotection was found in the hippocampal CA1 region. In the 20 mg/kg caffeic acid-syringic acid-treated ischemia group, a strong neuroprotective effect was found in the ischemic hippocampal CA1 region: about 89 % of hippocampal CA1 region pyramidal neurons survived. We also observed changes in glial cells (astrocytes and microglia) in the ischemic hippocampal CA1 region in all the groups. Among them, the distribution pattern of the glial cells was only in the 20 mg/kg caffeic acid-syringic acid-treated ischemia group similar to that in the sham group (control). In brief, 20 mg/kg caffeic acid-syringic acid showed a strong neuroprotective effect with an inhibition of glia activation in the hippocampal CA1 region induced by transient cerebral ischemia.


Assuntos
Região CA1 Hipocampal/efeitos dos fármacos , Ácidos Cafeicos/uso terapêutico , Ácido Gálico/análogos & derivados , Ataque Isquêmico Transitório/prevenção & controle , Fármacos Neuroprotetores/uso terapêutico , Animais , Região CA1 Hipocampal/patologia , Ácidos Cafeicos/síntese química , Ácidos Cafeicos/química , Ácidos Cafeicos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Ácido Gálico/síntese química , Ácido Gálico/química , Ácido Gálico/farmacologia , Ácido Gálico/uso terapêutico , Gerbillinae , Ataque Isquêmico Transitório/patologia , Masculino , Fármacos Neuroprotetores/síntese química
12.
Exp Neurol ; 362: 114323, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36690057

RESUMO

In this study, we investigated the effect of neuregulin-1 (NRG1) on demyelination and neurological function in an ischemic stroke model, and further explored its neuroprotective mechanisms. Adult male ICR mice underwent photothrombotic ischemia surgery and were injected with NRG1 beginning 30 min after ischemia. Cylinder and grid walking tests were performed to evaluate the forepaw function. In addition, the effect of NRG1 on neuronal damage/death (Cresyl violet, CV), neuronal nuclei (NeuN), nestin, doublecortin (DCX), myelin basic protein (MBP), non-phosphorylated neurofilaments (SMI-32), adenomatous polyposis coli (APC), erythroblastic leukemia viral oncogene homolog (ErbB) 2, 4 and serine-threonine protein kinase (Akt) in cortex were evaluated using immunohistochemistry, immunofluorescence and western blot. The cylinder and grid walking tests exposed that treatment of NRG1 observably regained the forepaw function. NRG1 treatment reduced cerebral infarction, restored forepaw function, promoted proliferation and differentiation of neuron and increased oligodendrogliogenesis. The neuroprotective effect of NRG1 is involved in its activation of PI3K/Akt signaling pathway via ErbB2, as shown by the suppression of the effect of NRG1 by the PI3K inhibitor LY294002. Our results demonstrate that NRG1 is effective in ameliorating the both acute phase neuroprotection and long-term neurological functions via resumption of neuronal proliferation and differentiation and oligodendrogliogenesis in a male mouse model of ischemic stroke.


Assuntos
AVC Isquêmico , Remielinização , Camundongos , Animais , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neuregulina-1/metabolismo , Camundongos Endogâmicos ICR , Transdução de Sinais , Oligodendroglia/metabolismo , Proliferação de Células
13.
Cell Mol Neurobiol ; 32(7): 1127-38, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22555669

RESUMO

It has been reported that young animals are less vulnerable to brain ischemia. In the present study, we compared gliosis in the hippocampal CA1 region of the young gerbil with those in the adult gerbil induced by 5 min of transient cerebral ischemia by immunohistochemistry and western blot for glial cells. We used male gerbils of postnatal month 1 (PM 1) as the young and PM 6 as the adult. Neuronal death in CA1 pyramidal neurons in the adult gerbil occurred at 4 days post-ischemia; the neuronal death in the young gerbil occurred at 7 days post-ischemia. The findings of glial changes in the young gerbil after ischemic damage were distinctively different from those in the adult gerbil. Glial fibrillary acidic protein-immunoreactive astrocytes, ionized calcium-binding adapter molecule (Iba-1), and isolectin B4-immunoreactive microglia in the ischemic CA1 region were activated much later in the young gerbil than in the adult gerbil. In brief, very less gliosis occurred in the hippocampal CA1 region of the young gerbil than in the adult gerbil after transient cerebral ischemia.


Assuntos
Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/patologia , Ataque Isquêmico Transitório/metabolismo , Ataque Isquêmico Transitório/patologia , Neuroglia/metabolismo , Neuroglia/patologia , Fatores Etários , Animais , Gerbillinae , Gliose/metabolismo , Gliose/patologia , Masculino
14.
Neurochem Res ; 37(7): 1428-35, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22392256

RESUMO

Ribosomal protein S3 (rpS3), a multi-functional protein, has been known to participate in DNA repair mechanism. In this study, we investigated changes in rpS3 immunoreactivity and its protein levels in the sub-regions of the gerbil hippocampus following subacute and chronic restraint stress. Serum corticosterone levels were increased in both the subacute and chronic-stress-groups compared to the control-group: the level in the subacute-stress-group was much higher than that in the chronic-stress-group. We could not find any neuronal damage in all the sub-regions of the hippocampus after both the subacute and chronic restraint stress. In the subacute-stress-group, rps3 immunoreactivity was not different compared to the control-group. However, rps3 immunoreactivity in the chronic-stress-group was decreased compared to the subacute-stress-group: especially, the immunoreactivity was markedly decreased in the pyramidal cells of the hippocampus proper (CA1-CA3 region) and granule cells of the dentate gyrus. In addition, western blot analysis also showed that rpS3 protein levels in the chronic-stress-group were significantly decreased compared to those in the subacute-stress-group. These findings indicate that chronic stress, not subacute stress, can decrease rpS3 immunoreactivity.


Assuntos
Hipocampo/metabolismo , Imobilização , Proteínas Ribossômicas/metabolismo , Estresse Fisiológico , Animais , Corticosterona/metabolismo , Gerbillinae
15.
Neurochem Res ; 36(12): 2417-26, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21842272

RESUMO

Innate immune system is very important to modulate the host defense against a large variety of pathogens. Toll-like receptors (TLRs) play a key role in controlling innate immune response. Among TLRs, TLR4 is a specific receptor for lipopolysaccharide and associated with the release of pro-inflammatory cytokines. In the present study, we investigated ischemia-related changes of TLR4 immunoreactivity and its protein level, and nuclear factor κB (NF-κB) p65 immunoreactivity regarding inflammatory responses in the hippocampal CA1 region after 5 min of transient cerebral ischemia to identify the correlation between transient ischemia and inflammation. In the sham-operated group, TLR4 immunoreactivity was easily detected in pyramidal neurons of the hippocampal CA1 region (CA1). TLR4 immunoreactivity in pyramidal neurons was distinctively decreased after ischemia/reperfusion (I/R); instead, based on double immunofluorescence study, TLR4 immunoreactivity was expressed in non-pyramidal neurons and astrocytes from 2 days postischemia. In addition, TLR4 protein level was lowest at 1 day postischemia and highest 4 days after I/R. On the other hand, NF-κB p65 immunoreactivity was not detected in the CA1 of the sham-operated group, and NF-κB p65 immunoreactivity was not observed until 1 day after I/R. However, NF-κB p65 immunoreactivity began to be expressed in astrocytes at 2 days postischemia, and the immunoreactivity was strong 4 days postischemia. Our results indicate that TLR4 and NF-κB p65 immunoreactivity are changed in CA1 pyramidal neurons and newly expressed in astrocytes, not in microglia, in the CA1 region after transient cerebral ischemia.


Assuntos
Região CA1 Hipocampal/metabolismo , Ataque Isquêmico Transitório/fisiopatologia , Receptor 4 Toll-Like/biossíntese , Fator de Transcrição RelA/biossíntese , Animais , Região CA1 Hipocampal/patologia , Morte Celular , Gerbillinae , Imunidade Inata/fisiologia , Ataque Isquêmico Transitório/patologia , Neurônios/patologia
16.
Neurochem Res ; 36(3): 435-42, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21193958

RESUMO

We investigated distribution and age-related changes in two isoforms of GABA synthesizing enzymes, glutamic acid decarboxylase (GAD) 65 and 67, in the lumbar levels (L(5)-L(6)) of the dog spinal cord. Male German shepherds were used at 1-2 years (young adult dogs) and 10-12 years (aged dogs) of age. GAD65 immunoreaction was observed in neuropil, not in cell bodies, in all laminae of the adult lumbar spinal cord: Many punctate GAD65-immunoreactive structures were shown in all laminae. The density of GAD65 immunoreactive structures was highest in laminae I-III, and lowest in lamina VII. In the aged dog, the distribution pattern of GAD65 immunoreactivity was similar to that in the adult dog; however the density of GAD65-immunoreactive structures and its protein levels were significantly increased in the aged lumbar spinal cord. GAD67 immunoreaction in the adult dog was also distributed in all laminae of the lumbar spinal cord like GAD65; however, we found that small GAD67-immunoreactive cell bodies were observed in laminae II, III and VIII. In the aged dogs, GAD67 immunoreactivity and its protein levels were also increased compared to those in the adult group. In conclusion, our results indicate that the distribution of GAD65-immunoreactive structures is different from GAD67-immunoreactive structures and that their immunoreactivity in the aged dogs is much higher than the adult dogs.


Assuntos
Glutamato Descarboxilase/metabolismo , Isoenzimas/metabolismo , Vértebras Lombares , Medula Espinal/metabolismo , Fatores Etários , Animais , Cães , Imuno-Histoquímica , Masculino , Medula Espinal/citologia
17.
Cell Mol Neurobiol ; 30(6): 929-38, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20405201

RESUMO

Neurogenesis occurs during the embryonic stage and throughout life. Brain injuries such as ischemic insults enhance cell proliferation in some areas of the brain. We examined proliferation of newly generated cells in each layer of the gerbil main olfactory bulb (MOB) after 5 min of transient cerebral ischemia using bromodeoxyuridine (BrdU) immunohistochemistry. Ischemia-related neuronal death in the MOB was not detected using Fluoro-Jade B histofluorescence and TUNEL staining. Many BrdU-positive ((+)) cells were found in the rostral migratory stream in control and ischemic MOBs. Significant increase of BrdU(+) cells was observed in the granule cell layer (GCL) and glomerular layer (GL) from 15 days post-ischemia, and BrdU(+) cells were very much higher than those of the control group 30 days post-ischemia. At this time point after ischemia/reperfusion, a few BrdU(+) cells in the GL and GCL were co-localized with calretinin(+) cells, and many BrdU(+) cells expressed doublecortin, a marker of immature neurons. These results indicate that cell proliferation is increased in the GCL and GL without apparent neuronal loss from 15 days after transient cerebral ischemia in gerbils.


Assuntos
Diferenciação Celular , Gerbillinae/metabolismo , Ataque Isquêmico Transitório/patologia , Neurônios/patologia , Bulbo Olfatório/patologia , Animais , Western Blotting , Bromodesoxiuridina/metabolismo , Calbindina 2 , Morte Celular , Proliferação de Células , Proteínas do Domínio Duplacortina , Imunofluorescência , Marcação In Situ das Extremidades Cortadas , Ataque Isquêmico Transitório/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Bulbo Olfatório/metabolismo , Proteína G de Ligação ao Cálcio S100/metabolismo
18.
Cell Mol Neurobiol ; 30(1): 1-12, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19533334

RESUMO

Expression and age-related changes of calbindin-D28k (CB), parvalbumin (PV), and calretinin (CR) in the main olfactory bulb of the dog were investigated by immunohistochemistry and western blot analysis. Neurons that expressed these calcium-binding proteins showed a characteristic laminar distribution. Most of CB-immunoreactive neurons were observed in the glomerular layer (GL) and the inner sublayer of the external plexiform layer (EPL). Most of PV-immunoreactive neurons were observed in the outer sublayer of the EPL. CR-immunoreactive neurons were mainly distributed in the GL and the granule cell layer. With regard to age-related changes, CB-immunoreactive neurons in the GL were stable among all age groups; however, in the EPL they decreased with age. PV-immunoreactive neurons decreased in middle-aged and aged groups. However, CR-immunoreactive neurons were not decreased in middle-aged and aged groups. These results suggest that CB-immunoreactive neurons in the EPL were most sensitive to aging, and that their reduction may be related to aging in the dog.


Assuntos
Envelhecimento/metabolismo , Bulbo Olfatório/metabolismo , Parvalbuminas/metabolismo , Proteína G de Ligação ao Cálcio S100/metabolismo , Animais , Western Blotting , Calbindina 2 , Calbindinas , Contagem de Células , Cães , Imuno-Histoquímica , Masculino , Neurônios/citologia , Neurônios/metabolismo , Bulbo Olfatório/citologia
19.
Neurochem Res ; 35(10): 1588-98, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20593235

RESUMO

In the present study, we examined ischemia-induced neuronal and glial changes in the gerbil MOB at various time points during 60 days after 5 min of transient cerebral ischemia. The number of neuronal neuclei-immunoreactive neurons was not changed after ischemia/reperfusion (I/R). Myelin basic protein immunoreaction was well preserved after I/R. Five days after I/R, reactive form of GFAP-immunoreactive astrocytes began to increase in the external plexiform layer and granule cell layer: These reactive astrocytes peaked 10 days after I/R, thereafter, they decreased with time after I/R. Iba-1-immunoreactive microglia were ubiquitously distributed in all layers of the MOB. After I/R, significant changes in their morphology and immunoreactivity were not detected. The results of western blot analyses for GFAP, Iba-1 and MBP were similar to the immunohistochemical data. In addition, 8-hydroxy-2'-deoxyguanosine (a marker for DNA damage) immunoreactivity and SOD1, an antioxidant, protein levels were not changed in the ischemic MOB. These results indicate that neurons in the MOB are resistant to ischemic insult, showing that astrocytes are activated late in the ischemic MOB.


Assuntos
Astrócitos/patologia , Gliose , Ataque Isquêmico Transitório/patologia , Neurônios/patologia , Bulbo Olfatório/patologia , Animais , Astrócitos/metabolismo , Morte Celular , Gerbillinae , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Masculino , Neurônios/metabolismo , Bulbo Olfatório/metabolismo
20.
Neurochem Res ; 35(1): 122-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19641991

RESUMO

Calretinin (CR)-immunoreactive interneurons are well known as the interneuron specific interneurons in the hippocampus. CR-immunoreactive neurons form cellular network and regulate the activity of other GABAergic inhibitory interneurons in the hippocampus. In the present study, we investigated age-related changes in CR-immunoreactive neurons and protein levels in the gerbil hippocampus during normal aging. In all subregions of the gerbil hippocampus, the number of CR-immunoreactive neurons was significantly decreased in the postnatal month 6 (PM 6) group compared to that in the PM 1 group. Thereafter, CR-immunoreactive neurons were decreased with age. In addition, the number of CR-immunoreactive cells in the subgranular zone were significantly decreased in the PM 6 group. We also observed that CR protein levels were decreased gradually with age. These results indicate that both CR immunoreactivity and its protein level were decreased with age in the gerbil hippocampus during normal aging.


Assuntos
Envelhecimento/metabolismo , Hipocampo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteína G de Ligação ao Cálcio S100/metabolismo , Animais , Calbindina 2 , Gerbillinae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA