Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biomed Eng ; 22: 79-102, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32160010

RESUMO

Silk fibers, which are protein-based biopolymers produced by spiders and silkworms, are fascinating biomaterials that have been extensively studied for numerous biomedical applications. Silk fibers often have remarkable physical and biological properties that typical synthetic materials do not exhibit. These attributes have prompted a wide variety of silk research, including genetic engineering, biotechnological synthesis, and bioinspired fiber spinning, to produce silk proteins on a large scale and to further enhance their properties. In this review, we describe the basic properties of spider silk and silkworm silk and the important production methods for silk proteins. We discuss recent advances in reinforced silk using silkworm transgenesis and functional additive diets with a focus on biomedical applications. We also explain that reinforced silk has an analogy with metamaterials such that user-designed atypical responses can be engineered beyond what naturally occurring materials offer. These insights into reinforced silk can guide better engineering of superior synthetic biomaterials and lead to discoveries of unexplored biological and medical applications of silk.


Assuntos
Ração Animal , Materiais Biocompatíveis/química , Bombyx/genética , Seda/química , Engenharia Tecidual/métodos , Animais , Animais Geneticamente Modificados , Engenharia Genética , Humanos , Insetos , Nanoestruturas/química , Óptica e Fotônica , Proteínas Citotóxicas Formadoras de Poros/química , Engenharia de Proteínas , Espécies Reativas de Oxigênio , Aranhas , Estresse Mecânico , Transgenes
2.
Opt Express ; 26(24): 31817-31828, 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30650761

RESUMO

We report an endogenous photoelectric biomolecule and demonstrate that such a biomolecule can be used to detect visible light. We identify the green pigment abundantly present in natural silk cocoons of Antheraea yamamai (Japanese oak silkmoth) as biliverdin, using mass spectroscopy and optical spectroscopy. Biliverdin extracted from the green silk cocoons generates photocurrent upon light illumination with distinct colors. We further characterize the basic performance, responsiveness, and stability of the biliverdin-based biophotosensors at a photovoltaic device level using blue, green, orange, and red light illumination. Biliverdin could potentially serve as an optoelectric biomolecule toward the development of next-generation implantable photosensors and artificial photoreceptors.


Assuntos
Biliverdina/análise , Técnicas Biossensoriais , Bombyx/química , Luz , Processos Fotoquímicos , Animais , Espectrometria de Massas , Análise Espectral
3.
Opt Express ; 23(3): A169-79, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25836246

RESUMO

We demonstrated the improved conversion efficiency (η) of dye-sensitized solar cells (DSSCs) using the textile-patterned polydimethylsiloxane (PDMS) antireflection layers prepared by metal-coated textile master molds by a simple soft imprint lithography. When light propagates through the textile-patterned surface of PDMS (i.e., textile PDMS) laminated on the outer glass surface deposited with fluorine-doped tin oxide (i.e., FTO/glass), both the transmitted and diffused lights into the photo-anode of DSSCs were simultaneously enhanced. Compared to the bare FTO/glass, the textile PDMS increased the total transmittance from 82.3 to 85.1% and its diffuse transmittance was significantly increased from 5.9 to 78.1% at 550 nm of wavelength. The optical property of textile PDMS was also theoretically analyzed by the finite-difference time-domain simulation. By laminating the textile PDMS onto the outer glass surface of DSSCs, the η was enhanced from 6.04 to 6.51%. Additionally, the fabricated textile PDMS exhibited a hydrophobic surface with water contact angle of ~123.15°.

4.
Opt Express ; 23(8): 9612-7, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25968997

RESUMO

We report the improved light output power in gallium nitride-based green flip-chip light-emitting diodes (FCLEDs) employed with inverted tetrahedron-pyramidal micropatterned polydimethylsiloxane (ITPM PDMS) films as an encapsulation and protection layer. The micropatterns are transferred into the surface of PDMS films from the sapphire substrate master molds with two-dimensional periodic hexagonal TPM arrays by a soft imprint lithography method. The ITPM PDMS film laminated on the sapphire dramatically enhances the diffuse transmittance (T(D)) in a wavelength (λ) range of 400-650 nm, exhibiting the larger T(D) value of ~53% at λ = 525 nm, (cf., T(D) ~1% for planar sapphire). By introducing the ITPM PDMS film on the outer surface of sapphire in FCLEDs, the light output power is enhanced, indicating the increment percentage of ~11.1% at 500 mA of injection current compared to the reference FCLED without the ITPM PDMS film, together with better electroluminescence intensity and far-field radiation pattern.

5.
Opt Express ; 23(14): 18777-85, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26191938

RESUMO

We demonstrated an enhanced surface plasmon resonance (SPR) detection by incorporating a nanoporous gold film on a thin gold substrate. Nanoscale control of thickness and roughness of the nanoporous layer was successfully accomplished by oblique angle deposition. In biosensing experiments, the results obtained by biotin-streptavidin interaction showed that SPR samples with a nanoporous gold layer provided a notable sensitivity improvement compared to a conventional bare gold film, which is attributed to an excitation of local plasmon field and an increased surface reaction area. Imaging sensitivity enhancement factor was employed to estimate an overall sensor performance of the fabricated samples and an optimal SPR structure was determined. Our approach is intended to show the feasibility and extend the applicability of the nanoporous gold film-mediated SPR biosensor to diverse biomolecular binding events.

6.
Appl Opt ; 54(5): 1027-31, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25968017

RESUMO

We fabricated amorphous silicon (a-Si)-based distributed Bragg reflectors (DBRs) consisting of alternating dense/porous films (i.e., pair) for a center wavelength (λ(c)) of 0.96 µm by oblique angle deposition (OAD) technique using an electron-beam evaporation system. The dense (high refractive index, i.e., high-n) and porous (low-n) a-Si films were deposited at two incident vapor flux angles of 0° and 80° in the OAD, respectively. Their optical reflectance characteristics were investigated in the wavelength range of 0.6-1.5 µm, including theoretical comparison using a rigorous coupled-wave analysis method. Above three pairs, the reflectivity (R) of a-Si DBRs was almost saturated at wavelengths around 0.96 µm, exhibiting R values of >97%. For the a-Si DBR with only three pairs, a broad normalized stop bandwidth (Δλ/λ(c)) of ∼22.5% was obtained at wavelengths of ∼0.87-1.085 µm, keeping high R values of >95%. To simply demonstrate the feasibility of device applications, the a-Si DBR with three pairs was coated as a high-reflection layer at the rear facet of GaAs/InGaAs quantum-well laser diodes (LDs) operating at λ=0.96 µm. For the LDs coated with three-pair a-Si DBR, external differential quantum efficiency (η(d)) was nearly doubled compared to the uncoated LDs, indicating the η(d) value of ∼50.6% (i.e., η(d)∼25.5% for the uncoated LDs).

7.
Opt Express ; 22(15): 18519-26, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25089471

RESUMO

Highly-tolerant distributed Bragg reflectors (DBRs) based on the same materials consisting of nanoporous/dense titanium dioxide (TiO2) film pair structures with wide-angle and broadband highly-reflective properties at visible wavelengths are reported. For a high refractive index contrast, the two dense and nanoporous TiO2 film stacks are alternatingly deposited on silicon (Si) substrates by a oblique angle deposition (OAD) method at two vapor flux angles (θα) of 0 and 80° for high and low refractive indices, respectively. For the TiO2 DBRs at a center wavelength (λ(c)) of 540 nm, the maximum level in reflectance (R) band is increased with increasing the number of pairs, exhibiting high R values of > 90% for 5 pairs, and the normalized stop bandwidth (∆λ/λ(c)) of ~17.8% is obtained. At λ(c) = 540 nm, the patterned TiO2 DBR with 5 pairs shows an uniform relative reflectivity over a whole surface of 3 inch-sized Si wafer and a large-scalable fabrication capability with any features. The angle-dependent reflectance characteristics of TiO2 DBR at λ(c) = 540 nm are also studied at incident angles (θ(inc)) of 20-70° for p-, s-, and non-polarized lights in the wavelength region of 350-750 nm, yielding high R values of > 70.4% at θ(inc) values of 20-70° for non-polarized light. By adjusting the λ(c)/4 thicknesses of nanoporous and dense films, for λ(c) = 450, 540, and 680 nm, tunable broadband TiO2 DBRs with high R values of > 90% at wavelengths of 400-800 nm are realized.

8.
Opt Express ; 22(4): 4723-30, 2014 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-24663791

RESUMO

We experimentally demonstrate that introduction of a dielectric film can prevent the surface plasmon resonance (SPR) curve from being shifted to a smaller angle, called negative shift, which occurs unpredictably when metallic nanostructures deposited on a metal film are exposed to an adsorption of binding analytes. From parylene coating experiments, we find that the proposed reflection-type SPR system with a low refractive index MgF2 film and gold nanorods can provide an enhanced sensitivity by more than 6 times as well as a reliable positive shift. It is due to the fact that use of a dielectric film can contribute to the compensation of an anomalous dispersion relation and the prevention of a destructive interaction of propagating surface plasmons with multiple localized plasmon modes. Our approach is intended to show the feasibility and extend the applicability of the proposed SPR system to diverse biomolecular reactions.


Assuntos
Nanopartículas Metálicas/química , Fenômenos Ópticos , Ressonância de Plasmônio de Superfície/métodos , Ouro/química , Nanopartículas Metálicas/ultraestrutura , Nanotubos/química , Nanotubos/ultraestrutura , Polímeros/química , Fatores de Tempo , Xilenos/química
9.
Opt Express ; 22(5): A328-34, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24800289

RESUMO

We report the efficiency enhancement of III-V InGaP/GaAs/ Ge triple-junction (TJ) solar cells using a novel structure, i.e., vertically-oriented gallium oxide hydroxide (GaOOH) nanopillars (NPs), as an antireflection coating. The optical reflectance properties of rhombus-shaped GaOOH NPs, which were synthesized by a simple, low-cost, and large-scalable electrochemical deposition method, were investigated, together with a theoretical analysis using the rigorous coupled-wave analysis method. For the GaOOH NPs, the solar weighted reflectance of ~8.5% was obtained over a wide wavelength range of 300-1800 nm and their surfaces exhibited a high water contact angle of ~130° (i.e., hydrophobicity). To simply demonstrate the feasibility of device applications, the GaOOH NPs were incorporated into a test-grown InGaP/GaAs/Ge TJ solar cell structure. For the InGaP/GaAs/Ge TJ solar cell with broadband antireflective GaOOH NPs, the conversion efficiency (η) of ~16.47% was obtained, indicating an increased efficiency by 3.47% compared to the bare solar cell (i.e., η~13%).

10.
Opt Express ; 22 Suppl 2: A328-34, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24922242

RESUMO

We report the efficiency enhancement of III-V InGaP/GaAs/ Ge triple-junction (TJ) solar cells using a novel structure, i.e., vertically-oriented gallium oxide hydroxide (GaOOH) nanopillars (NPs), as an antireflection coating. The optical reflectance properties of rhombus-shaped GaOOH NPs, which were synthesized by a simple, low-cost, and large-scalable electrochemical deposition method, were investigated, together with a theoretical analysis using the rigorous coupled-wave analysis method. For the GaOOH NPs, the solar weighted reflectance of ~8.5% was obtained over a wide wavelength range of 300-1800 nm and their surfaces exhibited a high water contact angle of ~130° (i.e., hydrophobicity). To simply demonstrate the feasibility of device applications, the GaOOH NPs were incorporated into a test-grown InGaP/GaAs/Ge TJ solar cell structure. For the InGaP/GaAs/Ge TJ solar cell with broadband antireflective GaOOH NPs, the conversion efficiency (η) of ~16.47% was obtained, indicating an increased efficiency by 3.47% compared to the bare solar cell (i.e., η~13%).

11.
ACS Nano ; 18(1): 1041-1053, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38117976

RESUMO

Hardware security is not a new problem but is ever-growing in consumer and medical domains owing to hyperconnectivity. A physical unclonable function (PUF) offers a promising hardware security solution for cryptographic key generation, identification, and authentication. However, electrical PUFs using nanomaterials or two-dimensional (2D) transition metal dichalcogenides (TMDCs) often have limited entropy and parameter space sources, both of which increase the vulnerability to attacks and act as bottlenecks for practical applications. We report an electrical PUF with enhanced entropy as well as parameter space by incorporating 2D TMDC heteronanostructures into field-effect transistors (FETs). Lateral heteronanostructures of 2D molybdenum disulfide and tungsten disulfide serve as a potent entropy source. The variable feature of FETs is further leveraged to enhance the parameter space that provides multiple challenge-response pairs, which are essential for PUFs. This combination results in stably repeatable yet highly variable FET characteristics as alternative electrical PUFs. Comprehensive PUF performance analyses validate the bit uniformity, reproducibility, uniqueness, randomness, false rates, and encoding capacity. The 2D material heteronanostructure-driven electrical PUFs with strong FET-to-FET variability can potentially be augmented as an immediately deployable and scalable security solution for various hardware devices.

12.
Opt Express ; 21(24): 29298-303, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24514482

RESUMO

We report the total and diffuse transmission enhancement of sapphires with the ultraviolet curable SU8 polymer surface structures consisting of conical subwavelength gratings (SWGs) at one- and both-side surfaces for different periods. The SWGs patterns on the silicon templates were transferred into the SU8 polymer film surface on sapphires by a simple and cost-effective soft lithography technique. For the fabricated samples, the surface morphologies, wetting behaviors, and optical characteristics were investigated. For theoretical optical analysis, a rigorous coupled-wave analysis method was used. At a period of 350 nm, the sample with SWGs on SU8 film/sapphire exhibited a hydrophobic surface and higher total transmittance compared to the bare sapphire over a wide wavelength of 450-1000 nm. As the period of SWGs was increased, the low total transmittance region of < 85% was shifted towards the longer wavelengths and became broader while the diffuse transmittance was increased (i.e., larger haze ratio). For the samples with SWGs at both-side surfaces, the total and diffuse transmittance spectra were further enhanced compared to the samples with SWGs at one-side surface. The theoretical optical calculation results showed a similar trend to the experimentally measured data.


Assuntos
Óxido de Alumínio/química , Compostos de Epóxi/química , Impressão Molecular/métodos , Nanopartículas/química , Fotografação/métodos , Polímeros/química , Refratometria/métodos , Adsorção/efeitos da radiação , Óxido de Alumínio/efeitos da radiação , Teste de Materiais , Nanopartículas/efeitos da radiação , Propriedades de Superfície/efeitos da radiação , Raios Ultravioleta
13.
Opt Express ; 21 Suppl 5: A821-8, 2013 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-24104577

RESUMO

We demonstrated the efficiency improvement of GaAs single-junction (SJ) solar cells with the single-material zinc sulfide (ZnS) bi-layer based on the porous/dense film structure, which was fabricated by the glancing angle deposition (GLAD) method, as an antireflection (AR) coating layer. The porous ZnS film with a low refractive index was formed at a high incident vapor flux angle of 80° in the GLAD. Each optimum thickness of ZnS bi-layer was determined by achieving the lowest solar weighted reflectance (SWR) using a rigorous coupled-wave analysis method in the wavelength region of 350-900 nm, extracting the thicknesses of 20 and 50 nm for dense and porous films, respectively. The ZnS bi-layer with a low SWR of ~5.8% considerably increased the short circuit current density (J(sc)) of the GaAs SJ solar cell to 25.57 mA/cm(2), which leads to a larger conversion efficiency (η) of 20.61% compared to the conventional one without AR layer (i.e., SWR~31%, J(sc) = 18.81 mA/cm(2), and η = 14.82%). Furthermore, after the encapsulation, its J(sc) and η values were slightly increased to 25.67 mA/cm(2) and 20.71%, respectively. For the fabricated solar cells, angle-dependent reflectance properties and external quantum efficiency were also studied.

14.
PNAS Nexus ; 2(4): pgad111, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37113981

RESUMO

Hyperspectral imaging acquires data in both the spatial and frequency domains to offer abundant physical or biological information. However, conventional hyperspectral imaging has intrinsic limitations of bulky instruments, slow data acquisition rate, and spatiospectral trade-off. Here we introduce hyperspectral learning for snapshot hyperspectral imaging in which sampled hyperspectral data in a small subarea are incorporated into a learning algorithm to recover the hypercube. Hyperspectral learning exploits the idea that a photograph is more than merely a picture and contains detailed spectral information. A small sampling of hyperspectral data enables spectrally informed learning to recover a hypercube from a red-green-blue (RGB) image without complete hyperspectral measurements. Hyperspectral learning is capable of recovering full spectroscopic resolution in the hypercube, comparable to high spectral resolutions of scientific spectrometers. Hyperspectral learning also enables ultrafast dynamic imaging, leveraging ultraslow video recording in an off-the-shelf smartphone, given that a video comprises a time series of multiple RGB images. To demonstrate its versatility, an experimental model of vascular development is used to extract hemodynamic parameters via statistical and deep learning approaches. Subsequently, the hemodynamics of peripheral microcirculation is assessed at an ultrafast temporal resolution up to a millisecond, using a conventional smartphone camera. This spectrally informed learning method is analogous to compressed sensing; however, it further allows for reliable hypercube recovery and key feature extractions with a transparent learning algorithm. This learning-powered snapshot hyperspectral imaging method yields high spectral and temporal resolutions and eliminates the spatiospectral trade-off, offering simple hardware requirements and potential applications of various machine learning techniques.

15.
Opt Express ; 20(18): 20576-81, 2012 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23037105

RESUMO

We fabricated the distributed Bragg reflectors (DBRs) with amorphous germanium (a-Ge) films consisted of the same materials at a center wavelength (λc) of 1.33 µm by the glancing angle deposition. Their optical reflectance properties were investigated in the infrared wavelength region of 1-1.9 µm at incident light angles (θ inc) of 8-70°, together with the theoretical analysis using a rigorous coupled-wave analysis simulation. The two alternating a-Ge films at the incident vapor flux angles of 0 and 75° were formed as the high and low refractive index materials, respectively. The a-Ge DBR with only 5 periods exhibited a normalized stop bandwidth (∆λ/λ c) of ~24.1%, maintaining high reflectance (R) values of > 99%. Even at a high θ inc of 70°, the ∆λ/λ c was ~21.9%, maintaining R values of > 85%. The a-Ge DBR with good uniformity was obtained over the area of a 2 inch Si wafer. The calculated reflectance results showed a similar tendency to the measured data.


Assuntos
Germânio/química , Lentes , Membranas Artificiais , Refratometria/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
16.
Opt Express ; 20(10): A431-40, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22712092

RESUMO

We fabricated the parabola-shaped subwavelength grating (SWG) nanostructures on indium tin oxide (ITO) films/Si and glass substrates using laser interference lithography, dry etching, and subsequent re-sputtering processes. The efficiency enhancement of an a-Si:H/µc-Si:H tandem thin film solar cell was demonstrated theoretically by applying the experimentally measured data of the fabricated samples to the simulation parameters. Their wetting behaviors and effective electrical properties as well as optical reflectance properties of ITO SWGs, together with theoretical prediction using a rigorous coupled-wave analysis method, were investigated. For the parabola-shaped ITO SWG/ITO film, the solar weighted reflectance (SWR) value was ~10.2% which was much lower than that (i.e., SWR~20%) of the conventional ITO film, maintaining the SWR values less than 19% up to a high incident angle of 70° over a wide wavelength range of 300-1100 nm. Also, the ITO SWG with a superhydrophilic surface property (i.e., water contact angle of 6.2°) exhibited an effective resistivity of 2.07 × 10(-3) Ω-cm. For the a-Si:H/µc-Si:H tandem thin film solar cell structure incorporated with the parabola-shaped ITO SWG/ITO film as an antireflective electrode layer, the conversion efficiency (η) of 13.7% was theoretically obtained under AM1.5g illumination, indicating an increased efficiency by 1.4% compared to the device with the conventional ITO film (i.e., η = 12.3%).

17.
Opt Express ; 20(4): 4056-66, 2012 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-22418164

RESUMO

We fabricated surface nanostructures with different pillar and cone shapes on glass substrates using thermally dewetted gold (Au) nanoparticles as etch masks by dry etching. Their optical total transmittance characteristics, together with theoretical predictions using rigorous coupled-wave analysis simulation, and wetting behaviors were investigated. The nanostructured glass substrates strongly enhanced the surface transmission compared to the flat glass substrate. The glass nanocones with a linearly graded effective refractive index profile exhibited better transmission properties than the glass nanopillars due to the lower surface reflectance, thus leading to higher average transmittance with increasing their height. For the glass nanocones with a period of 106 ± 39 nm at the Au film thickness of 5 nm, the higher average total transmittance (Tave) and solar weighted transmittance (SWT) of ~95.5 and ~95.8% at wavelengths of 300-1100 nm and the lower contact angle (θc) of 31° were obtained compared to the flat glass substrate (i.e., Tave~92.7%, SWT~92.7%, and θc~65°). The calculated total transmittance results showed a similar tendency to the experimental results.

18.
Opt Express ; 20(24): 26160-6, 2012 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-23187471

RESUMO

We reported the wafer-scale highly-transparent and superhydrophilic sapphires with antireflective subwavelength structures (SWSs) which were fabricated by dry etching using thermally dewetted gold (Au) nanomasks. Their optical transmittance properties were experimentally and theoretically investigated. The density, size, and period of the thermally dewetted Au nanopatterns can be controlled by the Au film thickness. For the sapphire with both-side SWSs at 5 nm of Au film, the average total transmittance (T(avg)) of ~96.5% at 350-800 nm was obtained, indicating a higher value than those of the flat sapphire (T(avg)~85.6%) and the sapphire with one-side SWSs (T(avg)~91%), and the less angle-dependent transmittance property was observed. The calculated transmittance results also showed a similar tendency to the measured data. The SWSs enhanced significantly the surface hydrophilicity of sapphires, exhibiting a water contact angle (θ(c)) of < 5° for Au film of 5 nm compared to θ(c)~37° of the flat sapphire.


Assuntos
Óxido de Alumínio/química , Óptica e Fotônica/instrumentação , Refratometria/instrumentação , Desenho de Equipamento , Ouro , Humanos , Interações Hidrofóbicas e Hidrofílicas , Nanoestruturas , Propriedades de Superfície
19.
J Nanosci Nanotechnol ; 12(10): 7932-8, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23421159

RESUMO

We reported the bioinspired periodic pinecone-shaped silicon (Si) subwavelength nanostructures, which were fabricated by laser interference lithography and inductively coupled plasma etching using thermally dewetted gold (Au) nanoparticles in SiCl4 plasma, on Si substrates for broadband and wide-angle antireflective surface. For the fabricated pinecone-like Si subwavelength nanostructures, antireflection characteristics and wetting behaviors were investigated. The pinecone-shaped Si subwavelength nanostructure with a period of 320 nm for 7 nm of Au film exhibited a relatively low solar weighted reflectance value of 3.5% over a wide wavelength range of 300-1030 nm, maintaining the reflectance values of < 9.9% at a wavelength of 550 nm up to a high incident angle of theta(i) = 70 degrees for non-polarized light. This structure also showed a hydrophobic surface with a water contact angle of theta(c) approximately 102 degrees.


Assuntos
Silício/química , Microscopia Eletrônica de Varredura , Propriedades de Superfície
20.
Nat Commun ; 13(1): 247, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017474

RESUMO

For modern security, devices, individuals, and communications require unprecedentedly unique identifiers and cryptographic keys. One emerging method for guaranteeing digital security is to take advantage of a physical unclonable function. Surprisingly, native silk, which has been commonly utilized in everyday life as textiles, can be applied as a unique tag material, thereby removing the necessary apparatus for optical physical unclonable functions, such as an objective lens or a coherent light source. Randomly distributed fibers in silk generate spatially chaotic diffractions, forming self-focused spots on the millimeter scale. The silk-based physical unclonable function has a self-focusing, low-cost, and eco-friendly feature without relying on pre-/post-process for security tag creation. Using these properties, we implement a lens-free, optical, and portable physical unclonable function with silk identification cards and study its characteristics and reliability in a systemic manner. We further demonstrate the feasibility of the physical unclonable functions in two modes: authentication and data encryption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA