Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Hum Mol Genet ; 33(18): 1630-1641, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39230874

RESUMO

Aminoacyl-transfer RiboNucleic Acid synthetases (ARSs) are essential enzymes that catalyze the attachment of each amino acid to their cognate tRNAs. Mitochondrial ARSs (mtARSs), which ensure protein synthesis within the mitochondria, are encoded by nuclear genes and imported into the organelle after translation in the cytosol. The extensive use of next generation sequencing (NGS) has resulted in an increasing number of variants in mtARS genes being identified and associated with mitochondrial diseases. The similarities between yeast and human mitochondrial translation machineries make yeast a good model to quickly and efficiently evaluate the effect of variants in mtARS genes. Genetic screening of patients with a clinical suspicion of mitochondrial disorders through a customized gene panel of known disease-genes, including all genes encoding mtARSs, led to the identification of missense variants in WARS2, NARS2 and RARS2. Most of them were classified as Variant of Uncertain Significance. We exploited yeast models to assess the functional consequences of the variants found in these genes encoding mitochondrial tryptophanyl-tRNA, asparaginyl-tRNA, and arginyl-tRNA synthetases, respectively. Mitochondrial phenotypes such as oxidative growth, oxygen consumption rate, Cox2 steady-state level and mitochondrial protein synthesis were analyzed in yeast strains deleted in MSW1, SLM5, and MSR1 (the yeast orthologues of WARS2, NARS2 and RARS2, respectively), and expressing the wild type or the mutant alleles. Pathogenicity was confirmed for most variants, leading to their reclassification as Likely Pathogenic. Moreover, the beneficial effects observed after asparagine and arginine supplementation in the growth medium suggest them as a potential therapeutic approach.


Assuntos
Aminoacil-tRNA Sintetases , Mitocôndrias , Doenças Mitocondriais , Saccharomyces cerevisiae , Humanos , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Doenças Mitocondriais/genética , Saccharomyces cerevisiae/genética , Mitocôndrias/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Mutação de Sentido Incorreto
2.
Am J Hum Genet ; 108(12): 2368-2384, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34800363

RESUMO

The 2-oxoglutarate dehydrogenase-like (OGDHL) protein is a rate-limiting enzyme in the Krebs cycle that plays a pivotal role in mitochondrial metabolism. OGDHL expression is restricted mainly to the brain in humans. Here, we report nine individuals from eight unrelated families carrying bi-allelic variants in OGDHL with a range of neurological and neurodevelopmental phenotypes including epilepsy, hearing loss, visual impairment, gait ataxia, microcephaly, and hypoplastic corpus callosum. The variants include three homozygous missense variants (p.Pro852Ala, p.Arg244Trp, and p.Arg299Gly), three compound heterozygous single-nucleotide variants (p.Arg673Gln/p.Val488Val, p.Phe734Ser/p.Ala327Val, and p.Trp220Cys/p.Asp491Val), one homozygous frameshift variant (p.Cys553Leufs∗16), and one homozygous stop-gain variant (p.Arg440Ter). To support the pathogenicity of the variants, we developed a novel CRISPR-Cas9-mediated tissue-specific knockout with cDNA rescue system for dOgdh, the Drosophila ortholog of human OGDHL. Pan-neuronal knockout of dOgdh led to developmental lethality as well as defects in Krebs cycle metabolism, which was fully rescued by expression of wild-type dOgdh. Studies using the Drosophila system indicate that p.Arg673Gln, p.Phe734Ser, and p.Arg299Gly are severe loss-of-function alleles, leading to developmental lethality, whereas p.Pro852Ala, p.Ala327Val, p.Trp220Cys, p.Asp491Val, and p.Arg244Trp are hypomorphic alleles, causing behavioral defects. Transcript analysis from fibroblasts obtained from the individual carrying the synonymous variant (c.1464T>C [p.Val488Val]) in family 2 showed that the synonymous variant affects splicing of exon 11 in OGDHL. Human neuronal cells with OGDHL knockout exhibited defects in mitochondrial respiration, indicating the essential role of OGDHL in mitochondrial metabolism in humans. Together, our data establish that the bi-allelic variants in OGDHL are pathogenic, leading to a Mendelian neurodevelopmental disease in humans.


Assuntos
Ataxia/genética , Epilepsia/genética , Perda Auditiva/genética , Complexo Cetoglutarato Desidrogenase/genética , Mutação , Transtornos do Neurodesenvolvimento/genética , Transtornos da Visão/genética , Alelos , Animais , Células Cultivadas , Criança , Estudos de Coortes , Análise Mutacional de DNA , Drosophila melanogaster/genética , Saúde da Família , Feminino , Fibroblastos , Humanos , Masculino , Splicing de RNA
3.
Brain ; 146(7): 2730-2738, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36860166

RESUMO

ATP5F1B is a subunit of the mitochondrial ATP synthase or complex V of the mitochondrial respiratory chain. Pathogenic variants in nuclear genes encoding assembly factors or structural subunits are associated with complex V deficiency, typically characterized by autosomal recessive inheritance and multisystem phenotypes. Movement disorders have been described in a subset of cases carrying autosomal dominant variants in structural subunits genes ATP5F1A and ATP5MC3. Here, we report the identification of two different ATP5F1B missense variants (c.1000A>C; p.Thr334Pro and c.1445T>C; p.Val482Ala) segregating with early-onset isolated dystonia in two families, both with autosomal dominant mode of inheritance and incomplete penetrance. Functional studies in mutant fibroblasts revealed no decrease of ATP5F1B protein amount but severe reduction of complex V activity and impaired mitochondrial membrane potential, suggesting a dominant-negative effect. In conclusion, our study describes a new candidate gene associated with isolated dystonia and confirms that heterozygous variants in genes encoding subunits of the mitochondrial ATP synthase may cause autosomal dominant isolated dystonia with incomplete penetrance, likely through a dominant-negative mechanism.


Assuntos
Distonia , Distúrbios Distônicos , Humanos , Distonia/genética , Distúrbios Distônicos/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Mutação de Sentido Incorreto , Linhagem , Proteínas/genética
4.
Int J Mol Sci ; 25(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39063023

RESUMO

Mitochondrial fission and fusion are vital dynamic processes for mitochondrial quality control and for the maintenance of cellular respiration; they also play an important role in the formation and maintenance of cells with high energy demand including cardiomyocytes and neurons. The DNM1L (dynamin-1 like) gene encodes for the DRP1 protein, an evolutionary conserved member of the dynamin family that is responsible for the fission of mitochondria; it is ubiquitous but highly expressed in the developing neonatal heart. De novo heterozygous pathogenic variants in the DNM1L gene have been previously reported to be associated with neonatal or infantile-onset encephalopathy characterized by hypotonia, developmental delay and refractory epilepsy. However, cardiac involvement has been previously reported only in one case. Next-Generation Sequencing (NGS) was used to genetically assess a baby girl characterized by developmental delay with spastic-dystonic, tetraparesis and hypertrophic cardiomyopathy of the left ventricle. Histochemical analysis and spectrophotometric determination of electron transport chain were performed to characterize the muscle biopsy; moreover, the morphology of mitochondria and peroxisomes was evaluated in cultured fibroblasts as well. Herein, we expand the phenotype of DNM1L-related disorder, describing the case of a girl with a heterozygous mutation in DNM1L and affected by progressive infantile encephalopathy, with cardiomyopathy and fatal paroxysmal vomiting correlated with bulbar transitory abnormal T2 hyperintensities and diffusion-weighted imaging (DWI) restriction areas, but without epilepsy. In patients with DNM1L mutations, careful evaluation for cardiac involvement is recommended.


Assuntos
Cardiomiopatias , Dinaminas , Mutação , Humanos , Feminino , Dinaminas/genética , Cardiomiopatias/genética , Mutação/genética , Lactente , Evolução Fatal , Encefalopatias/genética , Encefalopatias/patologia , GTP Fosfo-Hidrolases/genética
5.
Cerebellum ; 22(6): 1313-1319, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36447112

RESUMO

AFG3-like matrix AAA peptidase subunit 2 gene (AFG3L2, OMIM * 604,581) biallelic mutations lead to autosomal recessive spastic ataxia-5 SPAX5, OMIM # 614,487), a rare hereditary form of ataxia. The clinical spectrum includes early-onset cerebellar ataxia, spasticity, and progressive myoclonic epilepsy (PME). In Italy, the epidemiology of the disease is probably underestimated. The advent of next generation sequencing (NGS) technologies has speeded up the diagnosis of hereditary diseases and increased the percentage of diagnosis of rare disorders, such as the rare hereditary ataxia groups. Here, we describe two patients from two different villages in the province of Ferrara, who manifested a different clinical ataxia-plus history, although carrying the same biallelic mutation in AFG3L2 (p.Met625Ile) identified through NGS analysis.


Assuntos
Ataxia Cerebelar , Degenerações Espinocerebelares , Humanos , ATPases Associadas a Diversas Atividades Celulares/genética , Degenerações Espinocerebelares/genética , Ataxia Cerebelar/genética , Mutação/genética , Itália , Proteases Dependentes de ATP/genética
6.
Ann Neurol ; 88(1): 18-32, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32219868

RESUMO

OBJECTIVE: Dominant optic atrophy (DOA) is the most common inherited optic neuropathy, with a prevalence of 1:12,000 to 1:25,000. OPA1 mutations are found in 70% of DOA patients, with a significant number remaining undiagnosed. METHODS: We screened 286 index cases presenting optic atrophy, negative for OPA1 mutations, by targeted next generation sequencing or whole exome sequencing. Pathogenicity and molecular mechanisms of the identified variants were studied in yeast and patient-derived fibroblasts. RESULTS: Twelve cases (4%) were found to carry novel variants in AFG3L2, a gene that has been associated with autosomal dominant spinocerebellar ataxia 28 (SCA28). Half of cases were familial with a dominant inheritance, whereas the others were sporadic, including de novo mutations. Biallelic mutations were found in 3 probands with severe syndromic optic neuropathy, acting as recessive or phenotype-modifier variants. All the DOA-associated AFG3L2 mutations were clustered in the ATPase domain, whereas SCA28-associated mutations mostly affect the proteolytic domain. The pathogenic role of DOA-associated AFG3L2 mutations was confirmed in yeast, unraveling a mechanism distinct from that of SCA28-associated AFG3L2 mutations. Patients' fibroblasts showed abnormal OPA1 processing, with accumulation of the fission-inducing short forms leading to mitochondrial network fragmentation, not observed in SCA28 patients' cells. INTERPRETATION: This study demonstrates that mutations in AFG3L2 are a relevant cause of optic neuropathy, broadening the spectrum of clinical manifestations and genetic mechanisms associated with AFG3L2 mutations, and underscores the pivotal role of OPA1 and its processing in the pathogenesis of DOA. ANN NEUROL 2020 ANN NEUROL 2020;88:18-32.


Assuntos
Proteases Dependentes de ATP/genética , ATPases Associadas a Diversas Atividades Celulares/genética , GTP Fosfo-Hidrolases/genética , Atrofia Óptica/genética , Doenças do Nervo Óptico/genética , Adolescente , Adulto , Idoso , Criança , Feminino , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Sequenciamento do Exoma , Adulto Jovem
7.
Hum Mutat ; 41(10): 1745-1750, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32652806

RESUMO

Biallelic mutations in the C1QBP gene have been associated with mitochondrial cardiomyopathy and combined respiratory-chain deficiencies, with variable onset (including intrauterine or neonatal forms), phenotypes, and severity. We studied two unrelated adult patients from consanguineous families, presenting with progressive external ophthalmoplegia (PEO), mitochondrial myopathy, and without any heart involvement. Muscle biopsies from both patients showed typical mitochondrial alterations and the presence of multiple mitochondrial DNA deletions, whereas biochemical defects of the respiratory chain were present only in one subject. Using next-generation sequencing approaches, we identified homozygous mutations in C1QBP. Immunoblot analyses in patients' muscle samples revealed a strong reduction in the amount of the C1QBP protein and varied impairment of respiratory chain complexes, correlating with disease severity. Despite the original study indicated C1QBP mutations as causative for mitochondrial cardiomyopathy, our data indicate that mutations in C1QBP have to be considered in subjects with PEO phenotype or primary mitochondrial myopathy and without cardiomyopathy.


Assuntos
Proteínas de Transporte , Miopatias Mitocondriais , Proteínas Mitocondriais , Oftalmoplegia Externa Progressiva Crônica , Oftalmoplegia , Proteínas de Transporte/genética , DNA Mitocondrial/genética , Homozigoto , Humanos , Miopatias Mitocondriais/genética , Proteínas Mitocondriais/genética , Mutação , Oftalmoplegia/genética , Oftalmoplegia Externa Progressiva Crônica/genética , Oftalmoplegia Externa Progressiva Crônica/patologia
8.
Hum Mutat ; 40(5): 601-618, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30801875

RESUMO

Mitochondria are highly dynamic organelles, undergoing continuous fission and fusion. The DNM1L (dynamin-1 like) gene encodes for the DRP1 protein, an evolutionary conserved member of the dynamin family, responsible for fission of mitochondria, and having a role in the division of peroxisomes, as well. DRP1 impairment is implicated in several neurological disorders and associated with either de novo dominant or compound heterozygous mutations. In five patients presenting with severe epileptic encephalopathy, we identified five de novo dominant DNM1L variants, the pathogenicity of which was validated in a yeast model. Fluorescence microscopy revealed abnormally elongated mitochondria and aberrant peroxisomes in mutant fibroblasts, indicating impaired fission of these organelles. Moreover, a very peculiar finding in our cohort of patients was the presence, in muscle biopsy, of core like areas with oxidative enzyme alterations, suggesting an abnormal distribution of mitochondria in the muscle tissue.


Assuntos
Dinaminas/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Encefalomiopatias Mitocondriais/diagnóstico , Encefalomiopatias Mitocondriais/genética , Músculos/metabolismo , Músculos/patologia , Biomarcadores , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Análise Mutacional de DNA , Dinaminas/química , Fibroblastos/metabolismo , Estudos de Associação Genética/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Modelos Biológicos , Músculos/ultraestrutura , Mutação , Conformação Proteica , Relação Estrutura-Atividade
9.
Bioinformatics ; 34(17): 3038-3040, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29668842

RESUMO

Summary: Exome sequencing approach is extensively used in research and diagnostic laboratories to discover pathological variants and study genetic architecture of human diseases. However, a significant proportion of identified genetic variants are actually false positive calls, and this pose serious challenge for variants interpretation. Here, we propose a new tool named Genomic vARiants FIltering by dEep Learning moDels in NGS (GARFIELD-NGS), which rely on deep learning models to dissect false and true variants in exome sequencing experiments performed with Illumina or ION platforms. GARFIELD-NGS showed strong performances for both SNP and INDEL variants (AUC 0.71-0.98) and outperformed established hard filters. The method is robust also at low coverage down to 30X and can be applied on data generated with the recent Illumina two-colour chemistry. GARFIELD-NGS processes standard VCF file and produces a regular VCF output. Thus, it can be easily integrated in existing analysis pipeline, allowing application of different thresholds based on desired level of sensitivity and specificity. Availability and implementation: GARFIELD-NGS available at https://github.com/gedoardo83/GARFIELD-NGS. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Aprendizado Profundo , Genômica , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação INDEL , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos
10.
Am J Med Genet A ; 179(5): 827-831, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30773800

RESUMO

Here we report on a singleton patient affected by a complicated congenital syndrome characterized by growth delay, retinal dystrophy, sensorineural deafness, myopathy, ataxia, combined pituitary hormone deficiency, associated with mitochondrial impairment. Targeted clinical exome sequencing led to the identification of a homozygous missense variant in OTX2. Since only dominant mutations within OTX2 have been associated with cases of syndromic microphthalmia, retinal dystrophy with or without pituitary dysfunctions, this represents the first report of an OTX2 recessive mutation. Part of the phenotype, including ataxia, myopathy and multiple mitochondrial respiratory chain defects, seemed not related to OTX2. Further analysis of next generation sequencing (NGS) data revealed additional candidate variants: a homozygous variant in LETM1, and heterozygous rare variants in AFG3L2 and POLG. All three genes encode mitochondrial proteins and the last two are known to be associated with ataxia, a neurological sign present also in the father of the proband. With our study, we aim to encourage the integration of NGS data with a detailed analysis of clinical description and family history in order to unravel composite genotypes sometimes associated with complicated phenotypes.


Assuntos
Ataxia/genética , Homozigoto , Hipopituitarismo/genética , Mitocôndrias/genética , Doenças Musculares/genética , Mutação , Fatores de Transcrição Otx/genética , Distrofias Retinianas/genética , Adulto , Idoso , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos , Ataxia/diagnóstico , DNA Mitocondrial , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Hipopituitarismo/diagnóstico , Cariotipagem , Masculino , Mitocôndrias/metabolismo , Doenças Musculares/diagnóstico , Fatores de Transcrição Otx/química , Linhagem , Fenótipo , Distrofias Retinianas/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA