Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EMBO J ; 42(13): e112198, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37278161

RESUMO

There is growing evidence that ion channels are critically involved in cancer cell invasiveness and metastasis. However, the molecular mechanisms of ion signaling promoting cancer behavior are poorly understood and the complexity of the underlying remodeling during metastasis remains to be explored. Here, using a variety of in vitro and in vivo techniques, we show that metastatic prostate cancer cells acquire a specific Na+ /Ca2+ signature required for persistent invasion. We identify the Na+ leak channel, NALCN, which is overexpressed in metastatic prostate cancer, as a major initiator and regulator of Ca2+ oscillations required for invadopodia formation. Indeed, NALCN-mediated Na+ influx into cancer cells maintains intracellular Ca2+ oscillations via a specific chain of ion transport proteins including plasmalemmal and mitochondrial Na+ /Ca2+ exchangers, SERCA and store-operated channels. This signaling cascade promotes activity of the NACLN-colocalized proto-oncogene Src kinase, actin remodeling and secretion of proteolytic enzymes, thus increasing cancer cell invasive potential and metastatic lesions in vivo. Overall, our findings provide new insights into an ion signaling pathway specific for metastatic cells where NALCN acts as persistent invasion controller.


Assuntos
Neoplasias da Próstata , Sódio , Masculino , Humanos , Sódio/metabolismo , Canais Iônicos/metabolismo , Transporte de Íons , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
2.
Int J Mol Sci ; 24(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36613866

RESUMO

Though the first discovery of TRPV6 channel expression in various tissues took place in the early 2000s, reliable tools for its protein detection in various cells and tissues are still missing. Here we show the generation and validation of rabbit polyclonal anti-TRPV6 channel antibodies (rb79-82) against four epitopes of 15 amino acids. Among them, only one antibody, rb79, was capable of detecting the full-length glycosylated form of the TRPV6 channel at around 100 kDa. The generated antibody was shown to be suitable for all in vitro applications, such as immunoblotting, immunoprecipitation, immunocytochemistry, immunofluorescence, etc. One of the most important applications is immunohistochemistry using the paraffin-embedded sections from cancer resection specimens. Using prostate cancer resection specimens, we have confirmed the absence of the TRPV6 protein in both healthy and benign hyperplasia, as well as its expression and correlation to the prostate cancer grades. Thus, the generated rabbit polyclonal anti-TRPV6 channel antibody rb79 is suitable for all in vitro diagnostic applications and particularly for the diagnosis in clinics using paraffin-embedded sections from patients suffering from various diseases and disorders involving the TRPV6 channel.


Assuntos
Neoplasias da Próstata , Canais de Cátion TRPV , Humanos , Masculino , Animais , Coelhos , Canais de Cátion TRPV/metabolismo , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/metabolismo , Imuno-Histoquímica , Cálcio/metabolismo
3.
Proc Natl Acad Sci U S A ; 111(37): E3870-9, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25172921

RESUMO

Transient receptor potential vanilloid subfamily member 6 (TRPV6) is a highly selective calcium channel that has been considered as a part of store-operated calcium entry (SOCE). Despite its first discovery in the early 2000s, the role of this channel in prostate cancer (PCa) remained, until now, obscure. Here we show that TRPV6 mediates calcium entry, which is highly increased in PCa due to the remodeling mechanism involving the translocation of the TRPV6 channel to the plasma membrane via the Orai1/TRPC1-mediated Ca(2+)/Annexin I/S100A11 pathway, partially contributing to SOCE. The TRPV6 calcium channel is expressed de novo by the PCa cell to increase its survival by enhancing proliferation and conferring apoptosis resistance. Xenografts in nude mice and bone metastasis models confirmed the remarkable aggressiveness of TRPV6-overexpressing tumors. Immunohistochemical analysis of these demonstrated the increased expression of clinical markers such as Ki-67, prostate specific antigen, synaptophysin, CD31, and CD56, which are strongly associated with a poor prognosis. Thus, the TRPV6 channel acquires its oncogenic potential in PCa due to the remodeling mechanism via the Orai1-mediated Ca(2+)/Annexin I/S100A11 pathway.


Assuntos
Canais de Cálcio/metabolismo , Membrana Celular/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Canais de Cátion TRPV/metabolismo , Animais , Anexina A1/metabolismo , Apoptose , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/secundário , Cálcio/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , Progressão da Doença , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Imuno-Histoquímica , Masculino , Camundongos Nus , Invasividade Neoplásica , Proteínas de Neoplasias/metabolismo , Proteína ORAI1 , Fenótipo , Transporte Proteico , Radiografia , Proteínas S100/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Eur Biophys J ; 45(7): 765-777, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27660079

RESUMO

Sodium (Na+) ions are known to regulate many signaling pathways involved in both physiological and pathological conditions. In particular, alterations in intracellular concentrations of Na+ and corresponding changes in membrane potential are known to be major actors of cancer progression to metastatic phenotype. Though the functionality of Na+ channels and the corresponding Na+ currents can be investigated using the patch-clamp technique, the latter is rather invasive and a technically difficult method to study intracellular Na+ transients compared to Na+ fluorescence imaging. Despite the fact that Na+ signaling is considered an important controller of cancer progression, only few data using Na+ imaging approaches are available so far, suggesting the persisting challenge within the scientific community. In this study, we describe in detail the approach for application of Na+ imaging technique to measure intracellular Na+ variations in human prostate cancer cells. Accordingly, we used three Na+-specific fluorescent dyes-Na+-binding benzofuran isophthalate (SBFI), CoroNa™ Green (Corona) and Asante NaTRIUM Green-2 (ANG-2). These dyes have been assessed for optimal loading conditions, dissociation constant and working range after different calibration methods, and intracellular Na+ sensitivity, in order to determine which probe can be considered as the most reliable to visualize Na+ fluctuations in vitro.


Assuntos
Corantes Fluorescentes/metabolismo , Espaço Intracelular/metabolismo , Imagem Molecular/métodos , Neoplasias da Próstata/patologia , Sódio/metabolismo , Calibragem , Linhagem Celular Tumoral , Citosol/efeitos dos fármacos , Citosol/metabolismo , Inibidores Enzimáticos/farmacologia , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Humanos , Espaço Intracelular/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Masculino , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Canais de Sódio Disparados por Voltagem/metabolismo
5.
Proc Natl Acad Sci U S A ; 110(50): E4839-48, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24277812

RESUMO

To achieve and maintain skin architecture and homeostasis, keratinocytes must intricately balance growth, differentiation, and polarized motility known to be governed by calcium. Orai1 is a pore subunit of a store-operated Ca(2+) channel that is a major molecular counterpart for Ca(2+) influx in nonexcitable cells. To elucidate the physiological significance of Orai1 in skin, we studied its functions in epidermis of mice, with targeted disruption of the orai1 gene, human skin sections, and primary keratinocytes. We demonstrate that Orai1 protein is mainly confined to the basal layer of epidermis where it plays a critical role to control keratinocyte proliferation and polarized motility. Orai1 loss of function alters keratinocyte differentiation both in vitro and in vivo. Exploring underlying mechanisms, we show that the activation of Orai1-mediated calcium entry leads to enhancing focal adhesion turnover via a PKCß-Calpain-focal adhesion kinase pathway. Our findings provide insight into the functions of the Orai1 channel in the maintenance of skin homeostasis.


Assuntos
Canais de Cálcio/metabolismo , Epiderme/fisiologia , Homeostase/fisiologia , Queratinócitos/metabolismo , Animais , Western Blotting , Canais de Cálcio/genética , Movimento Celular/fisiologia , Proliferação de Células , Células Epidérmicas , Epiderme/metabolismo , Adesões Focais/metabolismo , Humanos , Imuno-Histoquímica , Queratinócitos/fisiologia , Camundongos , Camundongos Knockout , Microscopia Confocal , Proteína ORAI1 , Reação em Cadeia da Polimerase em Tempo Real , Cicatrização/fisiologia
6.
Cell Death Dis ; 15(6): 419, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879621

RESUMO

TRPV6 calcium channel is a prospective target in prostate cancer (PCa) since it is not expressed in healthy prostate while its expression increases during cancer progression. Despite the role of TRPV6 in PCa cell survival and apoptotic resistance has been already established, no reliable tool to target TRPV6 channel in vivo and thus to reduce tumor burden is known to date. Here we report the generation of mouse monoclonal antibody mAb82 raised against extracellular epitope of the pore region of the channel. mAb82 inhibited TRPV6 currents by 90% at 24 µg/ml in a dose-dependent manner while decreasing store-operated calcium entry to 56% at only 2.4 µg/ml. mAb82 decreased PCa survival rate in vitro by 71% at 12 µg/ml via inducing cell death through the apoptosis cascade via activation of the protease calpain, following bax activation, mitochondria enlargement, and loss of cristae, Cyt C release, pro-caspase 9 cleavage with the subsequent activation of caspases 3/7. In vivo, mice bearing either PC3Mtrpv6+/+ or PC3Mtrpv6-/-+pTRPV6 tumors were successfully treated with mAb82 at the dose as low as 100 µg/kg resulting in a significant reduction tumor growth by 31% and 90%, respectively. The survival rate was markedly improved by 3.5 times in mice treated with mAb82 in PC3Mtrpv6+/+ tumor group and completely restored in PC3Mtrpv6-/-+pTRPV6 tumor group. mAb82 showed a TRPV6-expression dependent organ distribution and virtually no toxicity in the same way as mAbAU1, a control antibody of the same Ig2a isotype. Overall, our data demonstrate for the first time the use of an anti-TRPV6 monoclonal antibody in vitro and in vivo in the treatment of the TRPV6-expressing PCa tumors.


Assuntos
Anticorpos Monoclonais , Apoptose , Canais de Cálcio , Neoplasias da Próstata , Canais de Cátion TRPV , Masculino , Canais de Cátion TRPV/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Apoptose/efeitos dos fármacos , Humanos , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Camundongos , Canais de Cálcio/metabolismo , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Calpaína/metabolismo , Cálcio/metabolismo
7.
Front Genet ; 14: 1215645, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576552

RESUMO

Background: Transient receptor potential vanilloid subfamily member 6 (TRPV6), a highly calcium-selective channel, has been shown to play a significant role in calcium homeostasis and to participate both in vitro and in vivo in growth, cell survival, and drug resistance of prostate cancer. Its role and the corresponding calcium-dependent pathways were mainly studied in hormone-dependent human prostate cancer cell lines, often used as a model of early-stage prostate cancers. The goal of the present study was to describe the TRPV6-specific phenotype and signaling pathways it is involved in, using castration-resistant prostate cancer cell lines. Methods: RNA sequencing (RNA-seq) was used to study the gene expression impacted by TRPV6 using PC3Mtrpv6-/- versus PC3Mtrpv6+/+ and its derivative PC3M-luc-C6trpv6+/+ cell line in its native and TRPV6 overexpressed form. In addition to the whole-cell RNA sequencing, immunoblotting, quantitative PCR, and calcium imaging were used to validate trpv6 gene status and functional consequences, in both trpv6 -/- and TRPV6 overexpression cell lines. Results: trpv6 -/- status was validated using both immunoblotting and quantitative PCR, and the functional consequences of either trpv6 gene deletion or TRPV6 overexpression were shown using calcium imaging. RNA-seq analysis demonstrated that the calcium channel TRPV6, being a crucial player of calcium signaling, significantly impacts the expression of genes involved in cancer progression, such as cell cycle regulation, chemotaxis, migration, invasion, apoptosis, ferroptosis as well as drug resistance, and extracellular matrix (ECM) re-organization. Conclusion: Our data suggest that the trpv6 gene is involved in and regulates multiple pathways related to tumor progression and drug resistance in castration-resistant prostate cancer cells.

8.
Cancers (Basel) ; 15(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36980711

RESUMO

The TRPV6 calcium channel is known to be up-regulated in various tumors. The efforts to target the TRPV6 channel in vivo are still ongoing to propose an effective therapy against cancer. Here, we report the generation of two antibodies raised against extracellular epitopes corresponding to the extracellular loop between S1 and S2 (rb79) and the pore region (rb82). These antibodies generated a complex biphasic response with the transient activation of the TRPV6 channel. Store-operated calcium entry was consequently potentiated in the prostate cancer cell line LNCaP upon the treatment. Both rb79 and rb82 antibodies significantly decreased cell survival rate in a dose-dependent manner as compared to the control antibodies of the same isotype. This decrease was due to the enhanced cell death via apoptosis revealed using a sub-G1 peak in a cell cycle assay, TUNEL assay, and a Hoechst staining, having no effects in the PC3Mtrpv6-/- cell line. Moreover, all TUNEL-positive cells had TRPV6 membrane staining as compared to the control antibody treatment where TRPV6-positive cells were all TUNEL negative. These data clearly demonstrate that TRPV6 channel targeting using rb79 and rb82 antibodies is fatal and may be successfully used in the anticancer therapies.

9.
Cancers (Basel) ; 15(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38136316

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) stands as a highly aggressive and lethal cancer, characterized by a grim prognosis and scarce treatment alternatives. Within this context, TRPV6, a calcium-permeable channel, emerges as a noteworthy candidate due to its overexpression in various cancers, capable of influencing the cell behavior in different cancer entities. Nonetheless, the exact expression pattern and functional significance of TRPV6 in the context of PDAC remains enigmatic. This study scrutinizes the expression of TRPV6 in tissue specimens obtained from 46 PDAC patients across distinct stages and grades. We manipulated TRPV6 expression (knockdown, overexpression) in the human PDAC cell lines Panc-1 and Capan-1. Subsequently, we analyzed its impact on multiple facets, encompassing Ca2+ influx, proliferation, apoptosis, migration, chemoresistance, and tumor growth, both in vitro and in vivo. Notably, the data indicate a direct correlation between TRPV6 expression levels, tumor stage, and grade, establishing a link between TRPV6 and PDAC proliferation in tissue samples. Decreasing TRPV6 expression via knockdown hampered Ca2+ influx, resulting in diminished proliferation and viability in both cell lines, and cell cycle progression in Panc-1. The knockdown simultaneously led to an increase in apoptotic rates and increased the susceptibility of cells to 5-FU and gemcitabine treatments. Moreover, it accelerated migration and promoted collective movement among Panc-1 cells. Conversely, TRPV6 overexpression yielded opposing outcomes in terms of proliferation in Panc-1 and Capan-1, and the migration of Panc-1 cells. Intriguingly, both TRPV6 knockdown and overexpression diminished the process of tumor formation in vivo. This intricate interplay suggests that PDAC aggressiveness relies on a fine-tuned TRPV6 expression, raising its profile as a putative therapeutic target.

10.
J Physiol ; 590(6): 1369-76, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22331416

RESUMO

Abstract The TRPV6 channel belongs to the superfamily of transient receptor potential (TRP) channels, subfamily vanilloid, member 6. Its expression in health is mainly confined to epithelial tissue of different organs such as digestive tract, kidney, testis, ovaries and skin. Due to its high calcium selectivity over other TRP channels, this channel was shown to participate in close regulation of calcium homeostasis in the body. In cancer a number of pieces of evidence demonstrate its upregulation and correlation with the advanced stages in prostate, colon, breast, thyroid, and ovarian carcinomas. Little is known about its role in initiation or progression for most of cancers, though in prostate cancer its oncogenic potential in vitro has been suggested. The most probable mechanisms involve calcium signalling in the control of processes such as proliferation and apoptosis resistance, though in some cases first evidence was reported as to its likely protective role in some cancers such as colon cancer. Further studies are needed to confirm whether this channel does really have an oncogenic potential or is just the last hope for transformed cells/tissues to stop cancer.


Assuntos
Neoplasias/fisiopatologia , Canais de Cátion TRPV/fisiologia , Animais , Humanos
11.
Am J Physiol Cell Physiol ; 301(6): C1281-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21940667

RESUMO

Ion channels contribute to virtually all basic cellular processes, including such crucial ones for maintaining tissue homeostasis as proliferation, differentiation, and apoptosis. The involvement of ion channels in regulation of programmed cell death, or apoptosis, has been known for at least three decades based on observation that classical blockers of ion channels can influence cell death rates, prolonging or shortening cell survival. Identification of the central role of these channels in regulation of cell cycle and apoptosis as well as the recent discovery that the expression of ion channels is not limited solely to the plasma membrane, but may also include membranes of internal compartments, has led researchers to appreciate the pivotal role of ion channels plays in development of cancer. This review focuses on the aspects of programmed cell death influenced by various ion channels and how dysfunctions and misregulations of these channels may affect the development and progression of different cancers.


Assuntos
Apoptose/fisiologia , Canais Iônicos/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias/metabolismo , Animais , Humanos , Transporte de Íons/fisiologia
12.
Adv Exp Med Biol ; 704: 929-45, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21290334

RESUMO

Ion channels and notably TRP channels play a crucial role in a variety of physiological functions and in addition these channels have been also shown associated with several diseases including cancer. The process of cancer initiation and progression involves the altered expression of one or more of TRP proteins, depending on the nature of the cancer. The most clearly described role in pathogenesis has been evidenced for TRPM8, TRPV6 and TRPM1 channels. The increased expression of some other channels, such as TRPV1, TRPC1, TRPC6, TRPM4, and TRPM5 has also been demonstrated in some cancers. Further investigations are required to precise the role of TRP channels in cancer development and/or progression and to specifically develop further knowledge of TRP proteins as discriminative markers and prospective targets for pharmaceutical intervention in treating cancer.


Assuntos
Oncogenes , Canais de Potencial de Receptor Transitório/fisiologia , Progressão da Doença , Humanos , Neoplasias/fisiopatologia
13.
Cancers (Basel) ; 13(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34944940

RESUMO

The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a divalent cations permeant channel but also has intrinsic serine/threonine kinase activity. It is ubiquitously expressed in normal tissues and studies have indicated that it participates in important physiological and pharmacological processes through its channel-kinase activity, such as calcium/magnesium homeostasis, phosphorylation of proteins involved in embryogenesis or the cellular process. Accumulating evidence has shown that TRPM7 is overexpressed in human pathologies including breast cancer. Breast cancer is the second leading cause of cancer death in women with an incidence rate increase of around 0.5% per year since 2004. The overexpression of TRPM7 may be associated with a poor prognosis in breast cancer patients, so more efforts are needed to research a new therapeutic target. TRPM7 regulates the levels of Ca2+, which can alter the signaling pathways involved in survival, cell cycle progression, proliferation, growth, migration, invasion, epithelial-mesenchymal transition and thus determines cell behavior, promoting tumor development. This work provides a complete overview of the TRPM7 ion channel and its main involvements in breast cancer. Special consideration is given to the modulation of the channel as a potential target in breast cancer treatment by inhibition of proliferation, migration and invasion. Taken together, these data suggest the potential exploitation of TRPM7 channel-kinase as a therapeutic target and a diagnostic biomarker.

14.
Cells ; 10(5)2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925979

RESUMO

The transient receptor potential channels (TRPs) have been related to several different physiologies that range from a role in sensory physiology (including thermo- and osmosensation) to a role in some pathologies like cancer. The great diversity of functions performed by these channels is represented by nine sub-families that constitute the TRP channel superfamily. From the mid-2000s, several reports have shown the potential role of the TRP channels in cancers of multiple origin. The pancreatic cancer is one of the deadliest cancers worldwide. Its prevalence is predicted to rise further. Disappointingly, the treatments currently used are ineffective. There is an urgency to find new ways to counter this disease and one of the answers may lie in the ion channels belonging to the superfamily of TRP channels. In this review, we analyse the existing knowledge on the role of TRP channels in the development and progression of pancreatic ductal adenocarcinoma (PDAC). The functions of these channels in other cancers are also considered. This might be of interest for an extrapolation to the pancreatic cancer in an attempt to identify potential therapeutic interventions.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/metabolismo , Canais de Potencial de Receptor Transitório/fisiologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Carcinoma Ductal Pancreático/patologia , Cátions , Movimento Celular , Proliferação de Células , Progressão da Doença , Humanos , Canais Iônicos , Camundongos , Invasividade Neoplásica , Neoplasias Pancreáticas/patologia , Filogenia , Prevalência , Microambiente Tumoral
15.
Cancers (Basel) ; 13(12)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205590

RESUMO

Pancreatic cancer (PC) is a major cause of cancer-associated mortality in Western countries (and estimated to be the second cause of cancer deaths by 2030). The main form of PC is pancreatic adenocarcinoma, which is the fourth most common cause of cancer-related death, and this situation has remained virtually unchanged for several decades. Pancreatic ductal adenocarcinoma (PDAC) is inherently linked to the unique physiology and microenvironment of the exocrine pancreas, such as pH, mechanical stress, and hypoxia. Of them, calcium (Ca2+) signals, being pivotal molecular devices in sensing and integrating signals from the microenvironment, are emerging to be particularly relevant in cancer. Mutations or aberrant expression of key proteins that control Ca2+ levels can cause deregulation of Ca2+-dependent effectors that control signaling pathways determining the cells' behavior in a way that promotes pathophysiological cancer hallmarks, such as enhanced proliferation, survival and invasion. So far, it is essentially unknown how the cancer-associated Ca2+ signaling is regulated within the characteristic landscape of PDAC. This work provides a complete overview of the Ca2+ signaling and its main players in PDAC. Special consideration is given to the Ca2+ signaling as a potential target in PDAC treatment and its role in drug resistance.

16.
Biochim Biophys Acta ; 1793(3): 528-39, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19321128

RESUMO

The physiological role, the mechanisms of activation, as well as the endogenous regulators for the non-selective cationic channel TRPV2 are not known so far. In the present work we report that endogenous lysophospholipids such as lysophosphatidylcholine (LPC) and lysophosphatidylinositol (LPI) induce a calcium influx via TRPV2 channel. This activation is dependent on the length of the side-chain and the nature of the lysophospholipid head-group. TRPV2-mediated calcium uptake stimulated by LPC and LPI occurred via Gq/Go-protein and phosphatidylinositol-3,4 kinase (PI3,4K) signalling. We have shown that the mechanism of TRPV2 activation induced by LPC and LPI is due to the TRPV2 channel translocation to the plasma membrane. The activation of TRPV2 channel by LPC and LPI leads to an increase in the cell migration of the prostate cancer cell line PC3. We have demonstrated that TRPV2 is directly involved in both steady-state and lysophospholipid-stimulated cancer cell migration. Thus, for the first time, we have identified one of the natural regulators of TRPV2 channel, one of the mechanisms of TRPV2 activation and regulation, as well as its pathophysiological role in cancer.


Assuntos
Movimento Celular/efeitos dos fármacos , Lisofosfolipídeos/farmacologia , Neoplasias da Próstata/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Células CHO , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Linhagem Celular , Cricetinae , Cricetulus , Proteínas de Ligação ao GTP/metabolismo , Humanos , Masculino , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Transfecção
17.
Cells ; 9(2)2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-32013022

RESUMO

It has been widely established that transient receptor potential vanilloid (TRPV) channels play a crucial role in calcium homeostasis in mammalian cells. Modulation of TRPV channels activity can modify their physiological function leading to some diseases and disorders like neurodegeneration, pain, cancer, skin disorders, etc. It should be noted that, despite TRPV channels importance, our knowledge of the TRPV channels functions in cells is mostly limited to their plasma membrane location. However, some TRPV channels were shown to be expressed in the endoplasmic reticulum where their modulation by activators and/or inhibitors was demonstrated to be crucial for intracellular signaling. In this review, we have intended to summarize the poorly studied roles and functions of these channels in the endoplasmic reticulum.


Assuntos
Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Homeostase , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Humanos , Modelos Biológicos
18.
Cell Physiol Biochem ; 23(4-6): 335-46, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19471101

RESUMO

The calcium-sensing receptor (CaR), is a G protein-dependent receptor that responds to increments in extracellular Ca(2+) ([Ca(2+)](o)). We previously reported that an increase in [Ca(2+)](o) induced a release of intracellular calcium and Ca(2+) entry via store operated channels (SOCs). We also demonstrated that MCF-7 cells express Transient Receptor Potential canonical 1 (TRPC1) channels. Herein, we investigated CaR intracellular signaling pathways and examined the role of TRPC1 in CaR-induced cell proliferation, through the extracellular signal-regulated Kinases 1 & 2 (ERK1/2) pathways. Treatment by [Ca(2+)](o) increased both MCF-7 cell proliferation and TRPC1 expression. Both the [Ca(2+)](o) proliferative effect and TRPC1 protein levels were abolished by the ERK1/2 inhibitors. Moreover, [Ca(2+)](o) failed to increase cell proliferation either in the presence of CaR or TRPC1 siRNAs. Both [Ca(2+)](o) and the selective CaR activator spermine, elicited time and dose-dependent ERK1/2 phosphorylation. ERK1/2 phosphorylation was almost completely inhibited by treatment with the phospholipase C and the protein kinase C inhibitors. Treatment with 2-aminoethoxydiphenyl borate (2-APB), and SKF-96365 or by siTRPC1 diminished both [Ca(2+)](o)- and spermine-stimulated ERK1/2 phosphorylation. Moreover, down-regulation of TRPC1 by siRNA reduced the Ca(2+) entry induced by CaR activation. We conclude that the CaR activates ERK1/2 via a PLC/PKC-dependent pathway. Moreover, TRPC1 is required for the ERK1/2 phosphorylation, Ca(2+) entry and the CaR-proliferative effect.


Assuntos
Neoplasias da Mama/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Canais de Cátion TRPC/metabolismo , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Cálcio/metabolismo , Proliferação de Células , Regulação para Baixo , Feminino , Humanos , Fosforilação , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas , Fosfolipases Tipo C/metabolismo
19.
Cell Calcium ; 80: 117-124, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31055179

RESUMO

This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editors in Chief. This article was retracted because of inappropriate use of confidential material and text available to one of the authors through the review of "TRPV6 As A Target For Cancer Therapy", John M Stewart, J. Cancer, online date 2019-5-13; doi:10.7150/jca.31640.

20.
Front Pharmacol ; 10: 606, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231216

RESUMO

Monoclonal antibodies (mAbs) represent a rapidly growing pharmaceutical class of protein drugs that becomes an important part of the precision therapy. mAbs are characterized by their high specificity and affinity for the target antigen, which is mostly present on the cell surface. Ion channels are a large family of transmembrane proteins that control ion transport across the cell membrane. They are involved in almost all biological processes in both health and disease and are widely considered as prospective targets. However, no antibody-based drug targeting ion channel has been developed so far that has progressed to clinical use. Thus, we provide a comprehensive review of the elaborated mAbs against ion channels, describe their mechanisms of action, and discuss their therapeutic potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA