Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Nat Rev Mol Cell Biol ; 13(3): 141-52, 2012 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-22358330

RESUMO

The past 15 years have seen an explosion in our understanding of how cells replicate damaged DNA and how this can lead to mutagenesis. The Y-family DNA polymerases lie at the heart of this process, which is commonly known as translesion synthesis. This family of polymerases has unique features that enable them to synthesize DNA past damaged bases. However, as they exhibit low fidelity when copying undamaged DNA, it is essential that they are only called into play when they are absolutely required. Several layers of regulation ensure that this is achieved.


Assuntos
Dano ao DNA , Nucleotidiltransferases/fisiologia , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Domínio Catalítico , Reparo do DNA , Replicação do DNA , Humanos , Mutagênese , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína
2.
Brain ; 146(12): 5044-5059, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040034

RESUMO

Xeroderma pigmentosum (XP) results from biallelic mutations in any of eight genes involved in DNA repair systems, thus defining eight different genotypes (XPA, XPB, XPC, XPD, XPE, XPF, XPG and XP variant or XPV). In addition to cutaneous and ophthalmological features, some patients present with XP neurological disease. It is unknown whether the different neurological signs and their progression differ among groups. Therefore, we aim to characterize the XP neurological disease and its evolution in the heterogeneous UK XP cohort. Patients with XP were followed in the UK National XP Service, from 2009 to 2021. Age of onset for different events was recorded. Cerebellar ataxia and additional neurological signs and symptoms were rated with the Scale for the Assessment and Rating of Ataxia (SARA), the Inventory of Non-Ataxia Signs (INAS) and the Activities of Daily Living questionnaire (ADL). Patients' mutations received scores based on their predicted effects. Data from available ancillary tests were collected. Ninety-three XP patients were recruited. Thirty-six (38.7%) reported neurological symptoms, especially in the XPA, XPD and XPG groups, with early-onset and late-onset forms, and typically appearing after cutaneous and ophthalmological symptoms. XPA, XPD and XPG patients showed higher SARA scores compared to XPC, XPE and XPV. SARA total scores significantly increased over time in XPD (0.91 points/year, 95% confidence interval: 0.61, 1.21) and XPA (0.63 points/year, 95% confidence interval: 0.38, 0.89). Hyporeflexia, hypopallesthaesia, upper motor neuron signs, chorea, dystonia, oculomotor signs and cognitive impairment were frequent findings in XPA, XPD and XPG. Cerebellar and global brain atrophy, axonal sensory and sensorimotor neuropathies, and sensorineural hearing loss were common findings in patients. Some XPC, XPE and XPV cases presented with abnormalities on examination and/or ancillary tests, suggesting underlying neurological involvement. More severe mutations were associated with a faster progression in SARA total score in XPA (0.40 points/year per 1-unit increase in severity score) and XPD (0.60 points/year per 1-unit increase), and in ADL total score in XPA (0.35 points/year per 1-unit increase). Symptomatic and asymptomatic forms of neurological disease are frequent in XP patients, and neurological symptoms can be an important cause of disability. Typically, the neurological disease will be preceded by cutaneous and ophthalmological features, and these should be actively searched in patients with idiopathic late-onset neurological syndromes. Scales assessing cerebellar function, especially walking and speech, and disability can show progression in some of the groups. Mutation severity can be used as a prognostic biomarker for stratification purposes in clinical trials.


Assuntos
Doenças do Sistema Nervoso Central , Xeroderma Pigmentoso , Humanos , Xeroderma Pigmentoso/complicações , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/diagnóstico , Atividades Cotidianas , Estudos Prospectivos , Reparo do DNA , Mutação/genética
3.
Hum Mol Genet ; 30(18): 1711-1720, 2021 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-33909043

RESUMO

Trichothiodystrophy (TTD) is a rare hereditary neurodevelopmental disorder defined by sulfur-deficient brittle hair and nails and scaly skin, but with otherwise remarkably variable clinical features. The photosensitive TTD (PS-TTD) forms exhibits in addition to progressive neuropathy and other features of segmental accelerated aging and is associated with impaired genome maintenance and transcription. New factors involved in various steps of gene expression have been identified for the different non-photosensitive forms of TTD (NPS-TTD), which do not appear to show features of premature aging. Here, we identify alanyl-tRNA synthetase 1 and methionyl-tRNA synthetase 1 variants as new gene defects that cause NPS-TTD. These variants result in the instability of the respective gene products alanyl- and methionyl-tRNA synthetase. These findings extend our previous observations that TTD mutations affect the stability of the corresponding proteins and emphasize this phenomenon as a common feature of TTD. Functional studies in skin fibroblasts from affected individuals demonstrate that these new variants also impact on the rate of tRNA charging, which is the first step in protein translation. The extension of reduced abundance of TTD factors to translation as well as transcription redefines TTD as a syndrome in which proteins involved in gene expression are unstable.


Assuntos
Alanina-tRNA Ligase/genética , Metionina tRNA Ligase/genética , Síndromes de Tricotiodistrofia/genética , Alanina-tRNA Ligase/metabolismo , Criança , Estabilidade Enzimática/genética , Feminino , Humanos , Metionina tRNA Ligase/metabolismo , Síndromes de Tricotiodistrofia/enzimologia , Síndromes de Tricotiodistrofia/patologia , Sequenciamento Completo do Genoma
4.
Nucleic Acids Res ; 47(21): 11268-11283, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31586398

RESUMO

Accurate DNA replication is critical for the maintenance of genome integrity and cellular survival. Cancer-associated alterations often involve key players of DNA replication and of the DNA damage-signalling cascade. Post-translational modifications play a fundamental role in coordinating replication and repair and central among them is ubiquitylation. We show that the E3 ligase UBR5 interacts with components of the replication fork, including the translesion synthesis (TLS) polymerase polη. Depletion of UBR5 leads to replication problems, such as slower S-phase progression, resulting in the accumulation of single stranded DNA. The effect of UBR5 knockdown is related to a mis-regulation in the pathway that controls the ubiquitylation of histone H2A (UbiH2A) and blocking this modification is sufficient to rescue the cells from replication problems. We show that the presence of polη is the main cause of replication defects and cell death when UBR5 is silenced. Finally, we unveil a novel interaction between polη and H2A suggesting that UbiH2A could be involved in polη recruitment to the chromatin and the regulation of TLS.


Assuntos
Dano ao DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Células Cultivadas , Dano ao DNA/genética , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , DNA Polimerase Dirigida por DNA/genética , Histonas/metabolismo , Humanos , Ligação Proteica , Processamento de Proteína Pós-Traducional , Fase S/genética , Ubiquitinação/fisiologia
5.
Am J Hum Genet ; 98(4): 627-42, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26996949

RESUMO

The general transcription factor IIE (TFIIE) is essential for transcription initiation by RNA polymerase II (RNA pol II) via direct interaction with the basal transcription/DNA repair factor IIH (TFIIH). TFIIH harbors mutations in two rare genetic disorders, the cancer-prone xeroderma pigmentosum (XP) and the cancer-free, multisystem developmental disorder trichothiodystrophy (TTD). The phenotypic complexity resulting from mutations affecting TFIIH has been attributed to the nucleotide excision repair (NER) defect as well as to impaired transcription. Here, we report two unrelated children showing clinical features typical of TTD who harbor different homozygous missense mutations in GTF2E2 (c.448G>C [p.Ala150Pro] and c.559G>T [p.Asp187Tyr]) encoding the beta subunit of transcription factor IIE (TFIIEß). Repair of ultraviolet-induced DNA damage was normal in the GTF2E2 mutated cells, indicating that TFIIE was not involved in NER. We found decreased protein levels of the two TFIIE subunits (TFIIEα and TFIIEß) as well as decreased phosphorylation of TFIIEα in cells from both children. Interestingly, decreased phosphorylation of TFIIEα was also seen in TTD cells with mutations in ERCC2, which encodes the XPD subunit of TFIIH, but not in XP cells with ERCC2 mutations. Our findings support the theory that TTD is caused by transcriptional impairments that are distinct from the NER disorder XP.


Assuntos
Quinases Ciclina-Dependentes/genética , Reparo do DNA , Fatores de Transcrição TFII/genética , Síndromes de Tricotiodistrofia/genética , Sequência de Aminoácidos , Quinases Ciclina-Dependentes/metabolismo , Dano ao DNA , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Inativação Gênica , Humanos , Lactente , Masculino , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Linhagem , Fosforilação , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fator de Transcrição TFIIH/genética , Fator de Transcrição TFIIH/metabolismo , Fatores de Transcrição TFII/metabolismo , Proteína Grupo D do Xeroderma Pigmentoso/genética , Proteína Grupo D do Xeroderma Pigmentoso/metabolismo , Quinase Ativadora de Quinase Dependente de Ciclina
6.
Nucleic Acids Res ; 45(16): 9441-9454, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28934491

RESUMO

DNA translesion synthesis (TLS) is a crucial damage tolerance pathway that oversees the completion of DNA replication in the presence of DNA damage. TLS polymerases are capable of bypassing a distorted template but they are generally considered inaccurate and they need to be tightly regulated. We have previously shown that polη is phosphorylated on Serine 601 after DNA damage and we have demonstrated that this modification is important for efficient damage bypass. Here we report that polη is also phosphorylated by CDK2, in the absence of damage, in a cell cycle-dependent manner and we identify serine 687 as an important residue targeted by the kinase. We discover that phosphorylation on serine 687 regulates the stability of the polymerase during the cell cycle, allowing it to accumulate in late S and G2 when productive TLS is critical for cell survival. Furthermore, we show that alongside the phosphorylation of S601, the phosphorylation of S687 and S510, S512 and/or S514 are important for damage bypass and cell survival after UV irradiation. Taken together our results provide new insights into how cells can, at different times, modulate DNA TLS for improved cell survival.


Assuntos
Ciclo Celular/fisiologia , DNA Polimerase Dirigida por DNA/metabolismo , Ciclo Celular/efeitos da radiação , Linhagem Celular , Sobrevivência Celular , Quinase 2 Dependente de Ciclina/metabolismo , Dano ao DNA/efeitos da radiação , Reparo do DNA , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , Humanos , Fosforilação , Estabilidade Proteica , Serina/metabolismo , Raios Ultravioleta
7.
Proc Natl Acad Sci U S A ; 113(9): E1236-45, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26884178

RESUMO

Xeroderma pigmentosum (XP) is a rare DNA repair disorder characterized by increased susceptibility to UV radiation (UVR)-induced skin pigmentation, skin cancers, ocular surface disease, and, in some patients, sunburn and neurological degeneration. Genetically, it is assigned to eight complementation groups (XP-A to -G and variant). For the last 5 y, the UK national multidisciplinary XP service has provided follow-up for 89 XP patients, representing most of the XP patients in the United Kingdom. Causative mutations, DNA repair levels, and more than 60 clinical variables relating to dermatology, ophthalmology, and neurology have been measured, using scoring systems to categorize disease severity. This deep phenotyping has revealed unanticipated heterogeneity of clinical features, between and within complementation groups. Skin cancer is most common in XP-C, XP-E, and XP-V patients, previously considered to be the milder groups based on cellular analyses. These patients have normal sunburn reactions and are therefore diagnosed later and are less likely to adhere to UVR protection. XP-C patients are specifically hypersensitive to ocular damage, and XP-F and XP-G patients appear to be much less susceptible to skin cancer than other XP groups. Within XP groups, different mutations confer susceptibility or resistance to neurological damage. Our findings on this large cohort of XP patients under long-term follow-up reveal that XP is more heterogeneous than has previously been appreciated. Our data now enable provision of personalized prognostic information and management advice for each XP patient, as well as providing new insights into the functions of the XP proteins.


Assuntos
Xeroderma Pigmentoso/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Heterogeneidade Genética , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Fenótipo , Reino Unido , Adulto Jovem
8.
Mol Cell ; 37(3): 396-407, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20159558

RESUMO

DNA polymerase eta is a Y family polymerase involved in translesion synthesis (TLS). Its action is initiated by simultaneous interaction between the PIP box in pol eta and PCNA and between the UBZ in pol eta and monoubiquitin attached to PCNA. Whereas monoubiquitination of PCNA is required for its interaction with pol eta during TLS, we now show that monoubiquitination of pol eta inhibits this interaction, preventing its functions in undamaged cells. Identification of monoubiquitination sites within pol eta nuclear localization signal (NLS) led to the discovery that pol eta NLS directly contacts PCNA, forming an extended pol eta-PCNA interaction surface. We name this the PCNA-interacting region (PIR) and show that its monoubiquitination is downregulated by various DNA-damaging agents. We propose that this mechanism ensures optimal availability of nonubiquitinated, TLS-competent pol eta after DNA damage. Our work shows how monoubiquitination can either positively or negatively regulate the assembly of a protein complex, depending on which substrates are targeted by ubiquitin.


Assuntos
DNA Polimerase Dirigida por DNA/fisiologia , Sequência de Aminoácidos , Linhagem Celular , Dano ao DNA , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Dados de Sequência Molecular , Mutagênicos/farmacologia , Sinais de Localização Nuclear , Antígeno Nuclear de Célula em Proliferação/metabolismo , Alinhamento de Sequência , Ubiquitinação
9.
Mol Cell ; 37(5): 714-27, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20227374

RESUMO

Nucleotide excision repair (NER) is the most versatile DNA repair system that deals with the major UV photoproducts in DNA, as well as many other DNA adducts. The early steps of NER are well understood, whereas the later steps of repair synthesis and ligation are not. In particular, which polymerases are definitely involved in repair synthesis and how they are recruited to the damaged sites has not yet been established. We report that, in human fibroblasts, approximately half of the repair synthesis requires both pol kappa and pol delta, and both polymerases can be recovered in the same repair complexes. Pol kappa is recruited to repair sites by ubiquitinated PCNA and XRCC1 and pol delta by the classical replication factor complex RFC1-RFC, together with a polymerase accessory factor, p66, and unmodified PCNA. The remaining repair synthesis is dependent on pol epsilon, recruitment of which is dependent on the alternative clamp loader CTF18-RFC.


Assuntos
Dano ao DNA , Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Fibroblastos/enzimologia , ATPases Associadas a Diversas Atividades Celulares , Proteínas de Transporte/metabolismo , Linhagem Celular , Senescência Celular , DNA Polimerase II/metabolismo , DNA Polimerase III/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , Fibroblastos/efeitos da radiação , Humanos , Proteínas Nucleares/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose , Antígeno Nuclear de Célula em Proliferação/metabolismo , Processamento de Proteína Pós-Traducional , Transporte Proteico , Interferência de RNA , Proteínas Recombinantes de Fusão/metabolismo , Proteína de Replicação C/metabolismo , Fatores de Tempo , Transfecção , Ubiquitina-Proteína Ligases , Ubiquitinação , Raios Ultravioleta , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
10.
Nucleic Acids Res ; 44(3): 1064-79, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26446992

RESUMO

SMC5/6 is a highly conserved protein complex related to cohesin and condensin, which are the key components of higher-order chromatin structures. The SMC5/6 complex is essential for proliferation in yeast and is involved in replication fork stability and processing. However, the precise mechanism of action of SMC5/6 is not known. Here we present evidence that the NSE1/NSE3/NSE4 sub-complex of SMC5/6 binds to double-stranded DNA without any preference for DNA-replication/recombination intermediates. Mutations of key basic residues within the NSE1/NSE3/NSE4 DNA-binding surface reduce binding to DNA in vitro. Their introduction into the Schizosaccharomyces pombe genome results in cell death or hypersensitivity to DNA damaging agents. Chromatin immunoprecipitation analysis of the hypomorphic nse3 DNA-binding mutant shows a reduced association of fission yeast SMC5/6 with chromatin. Based on our results, we propose a model for loading of the SMC5/6 complex onto the chromatin.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , DNA/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Sequência de Aminoácidos , Proteínas de Ciclo Celular/química , Replicação do DNA , Humanos , Dados de Sequência Molecular , Ligação Proteica , Recombinação Genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Homologia de Sequência de Aminoácidos
11.
Proc Natl Acad Sci U S A ; 112(5): 1499-504, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25605938

RESUMO

Mutations in the XPD subunit of the DNA repair/transcription factor TFIIH result in distinct clinical entities, including the cancer-prone xeroderma pigmentosum (XP) and the multisystem disorder trichothiodystrophy (TTD), which share only cutaneous photosensitivity. Gene-expression profiles of primary dermal fibroblasts revealed overexpression of matrix metalloproteinase 1 (MMP-1), the gene encoding the metalloproteinase that degrades the interstitial collagens of the extracellular matrix (ECM), in TTD patients mutated in XPD compared with their healthy parents. The defect is observed in TTD and not in XP and is specific for fibroblasts, which are the main producers of dermal ECM. MMP-1 transcriptional up-regulation in TTD is caused by an erroneous signaling mediated by retinoic acid receptors on the MMP-1 promoter and leads to hypersecretion of active MMP-1 enzyme and degradation of collagen type I in the ECM of cell/tissue systems and TTD patient skin. In agreement with the well-known role of ECM in eliciting signaling events controlling cell behavior and tissue homeostasis, ECM alterations in TTD were shown to impact on the migration and wound-healing properties of patient dermal fibroblasts. The presence of a specific inhibitor of MMP activity was sufficient to restore normal cell migration, thus providing a potential approach for therapeutic strategies. This study highlights the relevance of ECM anomalies in TTD pathogenesis and in the phenotypic differences between TTD and XP.


Assuntos
Matriz Extracelular/patologia , Metaloproteinase 1 da Matriz/metabolismo , Fator de Transcrição TFIIH/fisiologia , Síndromes de Tricotiodistrofia/enzimologia , Humanos , Metaloproteinase 1 da Matriz/genética , Regiões Promotoras Genéticas , Receptores do Ácido Retinoico/metabolismo , Síndromes de Tricotiodistrofia/patologia , Cicatrização
12.
Am J Hum Genet ; 92(5): 807-19, 2013 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-23623389

RESUMO

Cockayne syndrome (CS) is a genetic disorder characterized by developmental abnormalities and photodermatosis resulting from the lack of transcription-coupled nucleotide excision repair, which is responsible for the removal of photodamage from actively transcribed genes. To date, all identified causative mutations for CS have been in the two known CS-associated genes, ERCC8 (CSA) and ERCC6 (CSB). For the rare combined xeroderma pigmentosum (XP) and CS phenotype, all identified mutations are in three of the XP-associated genes, ERCC3 (XPB), ERCC2 (XPD), and ERCC5 (XPG). In a previous report, we identified several CS cases who did not have mutations in any of these genes. In this paper, we describe three CS individuals deficient in ERCC1 or ERCC4 (XPF). Remarkably, one of these individuals with XP complementation group F (XP-F) had clinical features of three different DNA-repair disorders--CS, XP, and Fanconi anemia (FA). Our results, together with those from Bogliolo et al., who describe XPF alterations resulting in FA alone, indicate a multifunctional role for XPF.


Assuntos
Síndrome de Cockayne/genética , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Anemia de Fanconi/genética , Predisposição Genética para Doença/genética , Fenótipo , Xeroderma Pigmentoso/genética , Sequência de Aminoácidos , Sequência de Bases , Síndrome de Cockayne/enzimologia , Síndrome de Cockayne/patologia , Primers do DNA/genética , Anemia de Fanconi/enzimologia , Anemia de Fanconi/patologia , Evolução Fatal , Feminino , Humanos , Masculino , Dados de Sequência Molecular , Análise de Sequência de DNA , Xeroderma Pigmentoso/enzimologia , Xeroderma Pigmentoso/patologia
13.
Nature ; 465(7301): 1044-8, 2010 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-20577208

RESUMO

The variant form of the human syndrome xeroderma pigmentosum (XPV) is caused by a deficiency in DNA polymerase eta (Poleta), a DNA polymerase that enables replication through ultraviolet-induced pyrimidine dimers. Here we report high-resolution crystal structures of human Poleta at four consecutive steps during DNA synthesis through cis-syn cyclobutane thymine dimers. Poleta acts like a 'molecular splint' to stabilize damaged DNA in a normal B-form conformation. An enlarged active site accommodates the thymine dimer with excellent stereochemistry for two-metal ion catalysis. Two residues conserved among Poleta orthologues form specific hydrogen bonds with the lesion and the incoming nucleotide to assist translesion synthesis. On the basis of the structures, eight Poleta missense mutations causing XPV can be rationalized as undermining the molecular splint or perturbing the active-site alignment. The structures also provide an insight into the role of Poleta in replicating through D loop and DNA fragile sites.


Assuntos
DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Sequência de Bases , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Dano ao DNA , DNA Polimerase Dirigida por DNA/genética , Humanos , Cinética , Modelos Moleculares , Mutação de Sentido Incorreto/genética , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/metabolismo , Relação Estrutura-Atividade , Xeroderma Pigmentoso/enzimologia , Xeroderma Pigmentoso/genética
14.
J Allergy Clin Immunol ; 136(4): 1007-17, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26255102

RESUMO

BACKGROUND: Nonhomologous end-joining (NHEJ) is the major DNA double-strand break (DSB) repair mechanism in human cells. The final rejoining step requires DNA ligase IV (LIG4) together with the partner proteins X-ray repair cross-complementing protein 4 (XRCC4) and XRCC4-like factor. Patients with mutations in genes encoding LIG4, XRCC4-like factor, or the other NHEJ proteins DNA-dependent protein kinase catalytic subunit and Artemis are DSB repair defective and immunodeficient because of the requirement for NHEJ during V(D)J recombination. OBJECTIVE: We found a patient displaying microcephaly and progressive ataxia but a normal immune response. We sought to determine pathogenic mutations and to describe the molecular pathogenesis of the patient. METHODS: We performed next-generation exome sequencing. We evaluated the DSB repair activities and V(D)J recombination capacity of the patient's cells, as well as performing a standard blood immunologic characterization. RESULTS: We identified causal mutations in the XRCC4 gene. The patient's cells are radiosensitive and display the most severe DSB repair defect we have encountered using patient-derived cell lines. In marked contrast, a V(D)J recombination plasmid assay revealed that the patient's cells did not display the junction abnormalities that are characteristic of other NHEJ-defective cell lines. The mutant protein can interact efficiently with LIG4 and functions normally in in vitro assays and when transiently expressed in vivo. However, the mutation makes the protein unstable, and it undergoes proteasome-mediated degradation. CONCLUSION: Our findings reveal a novel separation of impact phenotype: there is a pronounced DSB repair defect and marked clinical neurological manifestation but no clinical immunodeficiency.


Assuntos
Ataxia/genética , Proteínas de Ligação a DNA/genética , Síndromes de Imunodeficiência/genética , Microcefalia/genética , Estabilidade Proteica , Ataxia/imunologia , DNA Ligase Dependente de ATP , DNA Ligases/metabolismo , Análise Mutacional de DNA , Reparo do DNA/genética , Feminino , Células HEK293 , Humanos , Síndromes de Imunodeficiência/imunologia , Microcefalia/imunologia , Mutação/genética , Ligação Proteica/genética , Tolerância a Radiação/genética , Recombinação V(D)J/genética , Adulto Jovem
15.
Cancer Cell ; 10(2): 121-32, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16904611

RESUMO

Inborn defects in nucleotide excision DNA repair (NER) can paradoxically result in elevated cancer incidence (xeroderma pigmentosum [XP]) or segmental progeria without cancer predisposition (Cockayne syndrome [CS] and trichothiodystrophy [TTD]). We report generation of a knockin mouse model for the combined disorder XPCS with a G602D-encoding mutation in the Xpd helicase gene. XPCS mice are the most skin cancer-prone NER model to date, and we postulate an unusual NER dysfunction that is likely responsible for this susceptibility. XPCS mice also displayed symptoms of segmental progeria, including cachexia and progressive loss of germinal epithelium. Like CS fibroblasts, XPCS and TTD fibroblasts from human and mouse showed evidence of defective repair of oxidative DNA lesions that may underlie these segmental progeroid symptoms.


Assuntos
Síndrome de Cockayne/patologia , Progéria/patologia , Neoplasias Cutâneas/patologia , Proteína Grupo D do Xeroderma Pigmentoso/metabolismo , Xeroderma Pigmentoso/patologia , Animais , Carcinoma de Células Escamosas/etiologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Transformada , Síndrome de Cockayne/complicações , Síndrome de Cockayne/metabolismo , Reparo do DNA , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Masculino , Camundongos , Camundongos Mutantes , Mutação , Papiloma/etiologia , Papiloma/metabolismo , Papiloma/patologia , Fenótipo , Progéria/complicações , Progéria/metabolismo , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/metabolismo , Xeroderma Pigmentoso/complicações , Xeroderma Pigmentoso/metabolismo , Proteína Grupo D do Xeroderma Pigmentoso/genética
16.
Nucleic Acids Res ; 40(15): 7393-403, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22638582

RESUMO

In eukaryotic cells, replication past damaged sites in DNA is regulated by the ubiquitination of proliferating cell nuclear antigen (PCNA). Little is known about how this process is affected by chromatin structure. There are two isoforms of the Remodels the Structure of Chromatin (RSC) remodelling complex in yeast. We show that deletion of RSC2 results in a dramatic reduction in the level of PCNA ubiquitination after DNA-damaging treatments, whereas no such effect was observed after deletion of RSC1. Similarly, depletion of the BAF180 component of the corresponding PBAF (Polybromo BRG1 (Brahma-Related Gene 1) Associated Factor) complex in human cells led to a similar reduction in PCNA ubiquitination. Remarkably, we found that depletion of BAF180 resulted after UV-irradiation, in a reduction not only of ubiquitinated PCNA but also of chromatin-associated unmodified PCNA and Rad18 (the E3 ligase that ubiquitinates PCNA). This was accompanied by a modest decrease in fork progression. We propose a model to account for these findings that postulates an involvement of PBAF in repriming of replication downstream from replication forks blocked at sites of DNA damage. In support of this model, chromatin immunoprecipitation data show that the RSC complex in yeast is present in the vicinity of the replication forks, and by extrapolation, this is also likely to be the case for the PBAF complex in human cells.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Dano ao DNA , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Ciclo Celular , Linhagem Celular , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/fisiologia , Proteínas de Ligação a DNA/fisiologia , Deleção de Genes , Humanos , Proteínas Nucleares/antagonistas & inibidores , Antígeno Nuclear de Célula em Proliferação/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/fisiologia , Ubiquitina-Proteína Ligases , Ubiquitinação
17.
Proc Natl Acad Sci U S A ; 108(33): 13647-52, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21808022

RESUMO

UV light induces DNA lesions, which are removed by nucleotide excision repair (NER). Exonuclease 1 (EXO1) is highly conserved from yeast to human and is implicated in numerous DNA metabolic pathways, including repair, recombination, replication, and telomere maintenance. Here we show that hEXO1 is involved in the cellular response to UV irradiation in human cells. After local UV irradiation, fluorescent-tagged hEXO1 localizes, together with NER factors, at the sites of damage in nonreplicating cells. hEXO1 accumulation requires XPF-dependent processing of UV-induced lesions and is enhanced by inhibition of DNA repair synthesis. In nonreplicating cells, depletion of hEXO1 reduces unscheduled DNA synthesis after UV irradiation, prevents ubiquitylation of histone H2A, and impairs activation of the checkpoint signal transduction cascade in response to UV damage. These findings reveal a key role for hEXO1 in the UV-induced DNA damage response linking NER to checkpoint activation in human cells.


Assuntos
Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA , Exodesoxirribonucleases/metabolismo , Raios Ultravioleta/efeitos adversos , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Dano ao DNA , Histonas/metabolismo , Humanos , Ubiquitinação
18.
Nat Cell Biol ; 8(6): 640-2, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16738703

RESUMO

DNA polymerase kappa (pol kappa) is a member of the Y-family of DNA polymerases that are thought to function in translesion synthesis (TLS) past different types of DNA damage. Here, we show that pol kappa-deficient mouse cells have substantially reduced (but not absent) levels of nucleotide excision repair (NER) of UV damage, as measured by several methods. Our results provide evidence for an unexpected role for pol kappa in mammalian NER.


Assuntos
Reparo do DNA , DNA Polimerase Dirigida por DNA/fisiologia , Animais , Linhagem Celular , DNA Polimerase Dirigida por DNA/deficiência , Fibroblastos/citologia , Cinética , Camundongos , Raios Ultravioleta/efeitos adversos
19.
Pediatr Neurol ; 141: 79-86, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36791574

RESUMO

BACKGROUND: Cockayne syndrome (CS) is a DNA repair disorder primarily associated with pathogenic variants in ERCC6 and ERCC8. As in other Mendelian disorders, there are a number of genetically unsolved CS cases. METHODS: We ascertained five individuals with monoallelic pathogenic variants in MORC2, previously associated with three dominantly inherited phenotypes: an axonal form of Charcot-Marie-Tooth disease type 2Z; a syndrome of developmental delay, impaired growth, dysmorphic facies, and axonal neuropathy; and a rare form of spinal muscular atrophy. RESULTS: One of these individuals bore a strong phenotypic resemblance to CS. We then identified monoallelic pathogenic MORC2 variants in three of five genetically unsolved individuals with a clinical diagnosis of CS. In total, we identified eight individuals with MORC2-related disorder, four of whom had clinical features strongly suggestive of CS. CONCLUSIONS: Our findings indicate that some forms of MORC2-related disorder have phenotypic similarities to CS, including features of accelerated aging. Unlike classic DNA repair disorders, MORC2-related disorder does not appear to be associated with a defect in transcription-coupled nucleotide excision repair and follows a dominant pattern of inheritance with variants typically arising de novo. Such de novo pathogenic variants present particular challenges with regard to both initial gene discovery and diagnostic evaluations. MORC2 should be included in diagnostic genetic test panels targeting the evaluation of microcephaly and/or suspected DNA repair disorders. Future studies of MORC2 and its protein product, coupled with further phenotypic characterization, will help to optimize the diagnosis, understanding, and therapy of the associated disorders.


Assuntos
Síndrome de Cockayne , Microcefalia , Humanos , Síndrome de Cockayne/genética , Enzimas Reparadoras do DNA/genética , Fenótipo , Microcefalia/genética , Mutação/genética , Fatores de Transcrição/genética
20.
Nat Cell Biol ; 6(10): 923-8, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15459720

RESUMO

Research on genome stability and integrity now extends far beyond the biochemistry of DNA repair to encompass signal transduction pathways that span numerous aspects of cellular life. Derailed genomic integrity pathways can result in debilitating genetic disorders, premature ageing, predisposition to cancer and degenerative conditions. Current progress in this rapidly expanding field was the subject of an EMBO workshop, Maintenance of Genomic Integrity, that took place in June 2004 in Galway, Ireland. Top


Assuntos
Reparo do DNA , Instabilidade Genômica/fisiologia , Transdução de Sinais , Animais , Centrossomo , Aberrações Cromossômicas , Dano ao DNA , Replicação do DNA , Doenças Genéticas Inatas/metabolismo , Predisposição Genética para Doença/etiologia , Predisposição Genética para Doença/genética , Humanos , Neoplasias/etiologia , Neoplasias/genética , Progéria/genética , Progéria/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA