RESUMO
The kinetics of the immune changes in COVID-19 across severity groups have not been rigorously assessed. Using immunophenotyping, RNA sequencing, and serum cytokine analysis, we analyzed serial samples from 207 SARS-CoV2-infected individuals with a range of disease severities over 12 weeks from symptom onset. An early robust bystander CD8+ T cell immune response, without systemic inflammation, characterized asymptomatic or mild disease. Hospitalized individuals had delayed bystander responses and systemic inflammation that was already evident near symptom onset, indicating that immunopathology may be inevitable in some individuals. Viral load did not correlate with this early pathological response but did correlate with subsequent disease severity. Immune recovery is complex, with profound persistent cellular abnormalities in severe disease correlating with altered inflammatory responses, with signatures associated with increased oxidative phosphorylation replacing those driven by cytokines tumor necrosis factor (TNF) and interleukin (IL)-6. These late immunometabolic and immune defects may have clinical implications.
Assuntos
Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , COVID-19/virologia , Interações Hospedeiro-Patógeno/imunologia , Ativação Linfocitária/imunologia , SARS-CoV-2/imunologia , Biomarcadores , Linfócitos T CD8-Positivos/metabolismo , COVID-19/diagnóstico , COVID-19/genética , Citocinas/metabolismo , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Humanos , Mediadores da Inflamação/metabolismo , Estudos Longitudinais , Ativação Linfocitária/genética , Fosforilação Oxidativa , Fenótipo , Prognóstico , Espécies Reativas de Oxigênio/metabolismo , Índice de Gravidade de Doença , TranscriptomaRESUMO
A systematic quantitative analysis of temporal changes in host and viral proteins throughout the course of a productive infection could provide dynamic insights into virus-host interaction. We developed a proteomic technique called "quantitative temporal viromics" (QTV), which employs multiplexed tandem-mass-tag-based mass spectrometry. Human cytomegalovirus (HCMV) is not only an important pathogen but a paradigm of viral immune evasion. QTV detailed how HCMV orchestrates the expression of >8,000 cellular proteins, including 1,200 cell-surface proteins to manipulate signaling pathways and counterintrinsic, innate, and adaptive immune defenses. QTV predicted natural killer and T cell ligands, as well as 29 viral proteins present at the cell surface, potential therapeutic targets. Temporal profiles of >80% of HCMV canonical genes and 14 noncanonical HCMV open reading frames were defined. QTV is a powerful method that can yield important insights into viral infection and is applicable to any virus with a robust in vitro model.
Assuntos
Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Citomegalovirus/fisiologia , Interações Hospedeiro-Patógeno , Proteômica , Virologia/métodos , Humanos , Evasão da Resposta Imune , Células Matadoras Naturais/imunologia , Transdução de Sinais , Linfócitos T/imunologia , Proteínas Virais/análiseRESUMO
All life forms defend their genome against DNA invasion. Eukaryotic cells recognize incoming DNA and limit its transcription through repressive chromatin modifications. The human silencing hub (HUSH) complex transcriptionally represses long interspersed element-1 retrotransposons (L1s) and retroviruses through histone H3 lysine 9 trimethylation (H3K9me3)1-3. How HUSH recognizes and initiates silencing of these invading genetic elements is unknown. Here we show that HUSH is able to recognize and transcriptionally repress a broad range of long, intronless transgenes. Intron insertion into HUSH-repressed transgenes counteracts repression, even in the absence of intron splicing. HUSH binds transcripts from the target locus, prior to and independent of H3K9me3 deposition, and target transcription is essential for both initiation and propagation of HUSH-mediated H3K9me3. Genomic data reveal how HUSH binds and represses a subset of endogenous intronless genes generated through retrotransposition of cellular mRNAs. Thus intronless cDNA-the hallmark of reverse transcription-provides a versatile way to distinguish invading retroelements from host genes and enables HUSH to protect the genome from 'non-self' DNA, despite there being no previous exposure to the invading element. Our findings reveal the existence of a transcription-dependent genome-surveillance system and explain how it provides immediate protection against newly acquired elements while avoiding inappropriate repression of host genes.
Assuntos
Inativação Gênica , Elementos Nucleotídeos Longos e Dispersos , Retroelementos , Histonas/genética , Humanos , Íntrons , Elementos Nucleotídeos Longos e Dispersos/genética , Metilação , Retroelementos/genética , TransgenesRESUMO
The vertebrate genome is under constant threat of invasion by genetic parasites. Whether the host can immediately recognize and respond to invading elements has been unclear. The discovery of the human silencing hub (HUSH) complex, and the finding that it provides immediate protection from genome invasion by silencing products of reverse transcription, have important implications for mammalian genome evolution. In this review, we summarize recent insights into HUSH function and describe how cellular introns provide a novel means of self-nonself discrimination, allowing HUSH to recognize and transcriptionally repress a broad range of intronless genetic elements. We discuss how HUSH contributes to genome evolution, and highlight studies reporting the critical role of HUSH in development and implicating HUSH in the control of immune signaling and cancer progression.
Assuntos
Inativação Gênica , Proteínas Nucleares , Animais , Humanos , Proteínas Nucleares/genética , Genoma , Vertebrados/genética , Mamíferos/genéticaRESUMO
The regulation of membrane lipid composition is critical for cellular homeostasis. Cells are particularly sensitive to phospholipid saturation, with increased saturation causing membrane rigidification and lipotoxicity. How mammalian cells sense membrane lipid composition and reverse fatty acid (FA)-induced membrane rigidification is poorly understood. Here we systematically identify proteins that differ between mammalian cells fed saturated versus unsaturated FAs. The most differentially expressed proteins were two ER-resident polytopic membrane proteins: the E3 ubiquitin ligase RNF145 and the lipid hydrolase ADIPOR2. In unsaturated lipid membranes, RNF145 is stable, promoting its lipid-sensitive interaction, ubiquitination and degradation of ADIPOR2. When membranes become enriched in saturated FAs, RNF145 is rapidly auto-ubiquitinated and degraded, stabilising ADIPOR2, whose hydrolase activity restores lipid homeostasis and prevents lipotoxicity. We therefore identify RNF145 as a FA-responsive ubiquitin ligase which, together with ADIPOR2, defines an autoregulatory pathway that controls cellular membrane lipid homeostasis and prevents acute lipotoxic stress.
Assuntos
Hidrolases , Fluidez de Membrana , Animais , Ácidos Graxos/metabolismo , Hidrolases/metabolismo , Mamíferos , Proteínas de Membrana/metabolismo , Fosfolipídeos , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismoRESUMO
The interactions between Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and human host factors enable the virus to propagate infections that lead to Coronavirus Disease 2019 (COVID-19). The spike protein is the largest structural component of the virus and mediates interactions essential for infection, including with the primary angiotensin-converting enzyme 2 (ACE2) receptor. We performed two independent cell-based systematic screens to determine whether there are additional proteins by which the spike protein of SARS-CoV-2 can interact with human cells. We discovered that in addition to ACE2, expression of LRRC15 also causes spike protein binding. This interaction is distinct from other known spike attachment mechanisms such as heparan sulfates or lectin receptors. Measurements of orthologous coronavirus spike proteins implied the interaction was functionally restricted to SARS-CoV-2 by accessibility. We localized the interaction to the C-terminus of the S1 domain and showed that LRRC15 shares recognition of the ACE2 receptor binding domain. From analyzing proteomics and single-cell transcriptomics, we identify LRRC15 expression as being common in human lung vasculature cells and fibroblasts. Levels of LRRC15 were greatly elevated by inflammatory signals in the lungs of COVID-19 patients. Although infection assays demonstrated that LRRC15 alone is not sufficient to permit viral entry, we present evidence that it can modulate infection of human cells. This unexpected interaction merits further investigation to determine how SARS-CoV-2 exploits host LRRC15 and whether it could account for any of the distinctive features of COVID-19.
Assuntos
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Ligação Proteica , Proteínas de Membrana/metabolismoRESUMO
Myelin is a multilayered membrane that tightly wraps neuronal axons, enabling efficient, high-speed signal propagation. The axon and myelin sheath form tight contacts, mediated by specific plasma membrane proteins and lipids, and disruption of these contacts causes devastating demyelinating diseases. Using two cell-based models of demyelinating sphingolipidoses, we demonstrate that altered lipid metabolism changes the abundance of specific plasma membrane proteins. These altered membrane proteins have known roles in cell adhesion and signaling, with several implicated in neurological diseases. The cell surface abundance of the adhesion molecule neurofascin (NFASC), a protein critical for the maintenance of myelin-axon contacts, changes following disruption to sphingolipid metabolism. This provides a direct molecular link between altered lipid abundance and myelin stability. We show that the NFASC isoform NF155, but not NF186, interacts directly and specifically with the sphingolipid sulfatide via multiple binding sites and that this interaction requires the full-length extracellular domain of NF155. We demonstrate that NF155 adopts an S-shaped conformation and preferentially binds sulfatide-containing membranes in cis, with important implications for protein arrangement in the tight axon-myelin space. Our work links glycosphingolipid imbalances to disturbance of membrane protein abundance and demonstrates how this may be driven by direct protein-lipid interactions, providing a mechanistic framework to understand the pathogenesis of galactosphingolipidoses.
Assuntos
Doenças Desmielinizantes , Sulfoglicoesfingolipídeos , Humanos , Glicoesfingolipídeos/metabolismo , Proteínas de Transporte/metabolismo , Fatores de Crescimento Neural/metabolismo , Bainha de Mielina/metabolismo , Moléculas de Adesão Celular/metabolismo , Doenças Desmielinizantes/patologiaRESUMO
The dynamic structure and composition of lipid membranes need to be tightly regulated to control the vast array of cellular processes from cell and organelle morphology to protein-protein interactions and signal transduction pathways. To maintain membrane integrity, sense-and-response systems monitor and adjust membrane lipid composition to the ever-changing cellular environment, but only a relatively small number of control systems have been described. Here, we explore the emerging role of the ubiquitin-proteasome system in monitoring and maintaining membrane lipid composition. We focus on the ER-resident RNF145 E3 ubiquitin ligase, its role in regulating adiponectin receptor 2 (ADIPOR2), its lipid hydrolase substrate, and the broader implications for understanding the homeostatic processes that fine-tune cellular membrane composition.
Assuntos
Ubiquitina-Proteína Ligases , Ubiquitina , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Ubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Lipídeos de MembranaRESUMO
The accessibility of cell surface proteins makes them tractable for targeting by cancer immunotherapy, but identifying suitable targets remains challenging. Here we describe plasma membrane profiling of primary human myeloma cells to identify an unprecedented number of cell surface proteins of a primary cancer. We used a novel approach to prioritize immunotherapy targets and identified a cell surface protein not previously implicated in myeloma, semaphorin-4A (SEMA4A). Using knock-down by short-hairpin RNA and CRISPR/nuclease-dead Cas9 (dCas9), we show that expression of SEMA4A is essential for normal myeloma cell growth in vitro, indicating that myeloma cells cannot downregulate the protein to avoid detection. We further show that SEMA4A would not be identified as a myeloma therapeutic target by standard CRISPR/Cas9 knockout screens because of exon skipping. Finally, we potently and selectively targeted SEMA4A with a novel antibody-drug conjugate in vitro and in vivo.
Assuntos
Mieloma Múltiplo , Semaforinas , Membrana Celular/metabolismo , Humanos , Fatores Imunológicos , Imunoterapia , Proteínas de Membrana , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Proteômica , Semaforinas/genética , Semaforinas/metabolismoRESUMO
Neural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous cells was originally proposed as the primary healing mechanism of NSC grafts, it is now clear that transplanted NSCs operate via multiple mechanisms, including the horizontal exchange of therapeutic cargoes to host cells via extracellular vesicles (EVs). EVs are membrane particles trafficking nucleic acids, proteins, metabolites and metabolic enzymes, lipids, and entire organelles. However, the function and the contribution of these cargoes to the broad therapeutic effects of NSCs are yet to be fully understood. Mitochondrial dysfunction is an established feature of several inflammatory and degenerative CNS disorders, most of which are potentially treatable with exogenous stem cell therapeutics. Herein, we investigated the hypothesis that NSCs release and traffic functional mitochondria via EVs to restore mitochondrial function in target cells. Untargeted proteomics revealed a significant enrichment of mitochondrial proteins spontaneously released by NSCs in EVs. Morphological and functional analyses confirmed the presence of ultrastructurally intact mitochondria within EVs with conserved membrane potential and respiration. We found that the transfer of these mitochondria from EVs to mtDNA-deficient L929 Rho0 cells rescued mitochondrial function and increased Rho0 cell survival. Furthermore, the incorporation of mitochondria from EVs into inflammatory mononuclear phagocytes restored normal mitochondrial dynamics and cellular metabolism and reduced the expression of pro-inflammatory markers in target cells. When transplanted in an animal model of multiple sclerosis, exogenous NSCs actively transferred mitochondria to mononuclear phagocytes and induced a significant amelioration of clinical deficits. Our data provide the first evidence that NSCs deliver functional mitochondria to target cells via EVs, paving the way for the development of novel (a)cellular approaches aimed at restoring mitochondrial dysfunction not only in multiple sclerosis, but also in degenerative neurological diseases.
Assuntos
Vesículas Extracelulares/metabolismo , Mitocôndrias/metabolismo , Células-Tronco Neurais/metabolismo , Animais , Transporte Biológico , Células Cultivadas , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Neurais/ultraestruturaRESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has caused widespread morbidity and mortality since its onset in late 2019. Here, we demonstrate that prior infection with human cytomegalovirus (HCMV) substantially increases infection with SARS-CoV-2 in vitro. HCMV is a common herpesvirus carried by 40%-100% of the population, which can reactivate in the lung under inflammatory conditions, such as those resulting from SARS-CoV-2 infection. We show in both endothelial and epithelial cell types that HCMV infection upregulates ACE2, the SARS-CoV-2 cell entry receptor. These observations suggest that HCMV reactivation events in the lung of healthy HCMV carriers could exacerbate SARS-CoV-2 infection and subsequent COVID-19 symptoms. This effect could contribute to the disparity of disease severity seen in ethnic minorities and those with lower socioeconomic status, due to their higher CMV seroprevalence. Our results warrant further clinical investigation as to whether HCMV infection influences the pathogenesis of SARS-CoV-2.
Assuntos
COVID-19 , Infecções por Citomegalovirus , Superinfecção , Humanos , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2 , Estudos Soroepidemiológicos , Peptidil Dipeptidase A , Células Epiteliais/metabolismoRESUMO
The Salmonella enterica effector SteD depletes mature MHC class II (mMHCII) molecules from the surface of infected antigen-presenting cells through ubiquitination of the cytoplasmic tail of the mMHCII ß chain. This requires the Nedd4 family HECT E3 ubiquitin ligase Wwp2 and a tumor-suppressing transmembrane protein adaptor Tmem127. Here, through a proteomic screen of dendritic cells, we found that SteD targets the plasma membrane protein CD97 for degradation by a similar mechanism. SteD enhanced ubiquitination of CD97 on K555 and mutation of this residue eliminated the effect of SteD on CD97 surface levels. We showed that CD97 localises to and stabilises the immunological synapse between dendritic cells and T cells. Removal of CD97 by SteD inhibited dendritic cell-T cell interactions and reduced T cell activation, independently of its effect on MHCII. Therefore, SteD suppresses T cell immunity by two distinct processes.
Assuntos
Proteínas de Bactérias/metabolismo , Células Dendríticas/imunologia , Sinapses Imunológicas/imunologia , Receptores Acoplados a Proteínas G/imunologia , Linfócitos T/imunologia , Animais , Apresentação de Antígeno/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Salmonella/metabolismo , Salmonella entericaRESUMO
Cancer cells exploit the expression of the programmed death-1 (PD-1) ligand 1 (PD-L1) to subvert T-cell-mediated immunosurveillance. The success of therapies that disrupt PD-L1-mediated tumour tolerance has highlighted the need to understand the molecular regulation of PD-L1 expression. Here we identify the uncharacterized protein CMTM6 as a critical regulator of PD-L1 in a broad range of cancer cells, by using a genome-wide CRISPR-Cas9 screen. CMTM6 is a ubiquitously expressed protein that binds PD-L1 and maintains its cell surface expression. CMTM6 is not required for PD-L1 maturation but co-localizes with PD-L1 at the plasma membrane and in recycling endosomes, where it prevents PD-L1 from being targeted for lysosome-mediated degradation. Using a quantitative approach to profile the entire plasma membrane proteome, we find that CMTM6 displays specificity for PD-L1. Notably, CMTM6 depletion decreases PD-L1 without compromising cell surface expression of MHC class I. CMTM6 depletion, via the reduction of PD-L1, significantly alleviates the suppression of tumour-specific T cell activity in vitro and in vivo. These findings provide insights into the biology of PD-L1 regulation, identify a previously unrecognized master regulator of this critical immune checkpoint and highlight a potential therapeutic target to overcome immune evasion by tumour cells.
Assuntos
Antígeno B7-H1/biossíntese , Antígeno B7-H1/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Animais , Antígeno B7-H1/imunologia , Sistemas CRISPR-Cas , Linhagem Celular , Membrana Celular/metabolismo , Endossomos/metabolismo , Feminino , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Lisossomos/metabolismo , Camundongos , Proteólise , Proteoma/metabolismo , Especificidade por Substrato , Linfócitos T/imunologia , Linfócitos T/metabolismo , Evasão Tumoral/imunologiaRESUMO
Herpes simplex virus 1 (HSV-1) induces a profound host shutoff during lytic infection. The virion host shutoff (vhs) protein plays a key role in this process by efficiently cleaving host and viral mRNAs. Furthermore, the onset of viral DNA replication is accompanied by a rapid decline in host transcriptional activity. To dissect relative contributions of both mechanisms and elucidate gene-specific host transcriptional responses throughout the first 8 h of lytic HSV-1 infection, we used transcriptome sequencing of total, newly transcribed (4sU-labeled) and chromatin-associated RNA in wild-type (WT) and Δvhs mutant infection of primary human fibroblasts. Following virus entry, vhs activity rapidly plateaued at an elimination rate of around 30% of cellular mRNAs per hour until 8 h postinfection (p.i.). In parallel, host transcriptional activity dropped to 10 to 20%. While the combined effects of both phenomena dominated infection-induced changes in total RNA, extensive gene-specific transcriptional regulation was observable in chromatin-associated RNA and was surprisingly concordant between WT and Δvhs infections. Both induced strong transcriptional upregulation of a small subset of genes that were poorly expressed prior to infection but already primed by H3K4me3 histone marks at their promoters. Most interestingly, analysis of chromatin-associated RNA revealed vhs-nuclease-activity-dependent transcriptional downregulation of at least 150 cellular genes, in particular of many integrin adhesome and extracellular matrix components. This was accompanied by a vhs-dependent reduction in protein levels by 8 h p.i. for many of these genes. In summary, our study provides a comprehensive picture of the molecular mechanisms that govern cellular RNA metabolism during the first 8 h of lytic HSV-1 infection.IMPORTANCE The HSV-1 virion host shutoff (vhs) protein efficiently cleaves both host and viral mRNAs in a translation-dependent manner. In this study, we model and quantify changes in vhs activity, as well as virus-induced global loss of host transcriptional activity, during productive HSV-1 infection. In general, HSV-1-induced alterations in total RNA levels were dominated by these two global effects. In contrast, chromatin-associated RNA depicted gene-specific transcriptional changes. This revealed highly concordant transcriptional changes in WT and Δvhs infections, confirmed DUX4 as a key transcriptional regulator in HSV-1 infection, and identified vhs-dependent transcriptional downregulation of the integrin adhesome and extracellular matrix components. The latter explained seemingly gene-specific effects previously attributed to vhs-mediated mRNA degradation and resulted in a concordant loss in protein levels by 8 h p.i. for many of the respective genes.
Assuntos
Regulação Viral da Expressão Gênica , Herpes Simples/metabolismo , Herpesvirus Humano 1/fisiologia , RNA Viral/metabolismo , Ribonucleases/metabolismo , Proteínas Virais/metabolismo , Replicação Viral , Fibroblastos/metabolismo , Fibroblastos/virologia , Herpes Simples/genética , Herpes Simples/patologia , Herpes Simples/virologia , Humanos , Biossíntese de Proteínas , Proteoma , RNA Viral/genética , Ribonucleases/genética , Transcriptoma , Proteínas Virais/genéticaRESUMO
Transcription of integrated DNA from viruses or transposable elements is tightly regulated to prevent pathogenesis. The Human Silencing Hub (HUSH), composed of Periphilin, TASOR and MPP8, silences transcriptionally active viral and endogenous transgenes. HUSH recruits effectors that alter the epigenetic landscape and chromatin structure, but how HUSH recognizes target loci and represses their expression remains unclear. We identify the physicochemical properties of Periphilin necessary for HUSH assembly and silencing. A disordered N-terminal domain (NTD) and structured C-terminal domain are essential for silencing. A crystal structure of the Periphilin-TASOR minimal core complex shows Periphilin forms an α-helical homodimer, bound by a single TASOR molecule. The NTD forms insoluble aggregates through an arginine/tyrosine-rich sequence reminiscent of low-complexity regions from self-associating RNA-binding proteins. Residues required for TASOR binding and aggregation were required for HUSH-dependent silencing and genome-wide deposition of repressive mark H3K9me3. The NTD was functionally complemented by low-complexity regions from certain RNA-binding proteins and proteins that form condensates or fibrils. Our work suggests the associative properties of Periphilin promote HUSH aggregation at target loci.
Assuntos
Antígenos de Neoplasias/ultraestrutura , Proteínas Nucleares/ultraestrutura , Proteínas de Ligação a RNA/química , Transcrição Gênica , Antígenos de Neoplasias/química , Antígenos de Neoplasias/genética , Cristalografia por Raios X , Elementos de DNA Transponíveis/genética , Epigênese Genética/genética , Inativação Gênica , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosfoproteínas/química , Fosfoproteínas/genética , Agregados Proteicos/genética , Ligação Proteica/genética , Conformação Proteica em alfa-Hélice , Domínios Proteicos/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/ultraestrutura , Vírus/genéticaRESUMO
Retrotransposons encompass half of the human genome and contribute to the formation of heterochromatin, which provides nuclear structure and regulates gene expression. Here, we asked if the human silencing hub (HUSH) complex is necessary to silence retrotransposons and whether it collaborates with TRIM28 and the chromatin remodeler ATRX at specific genomic loci. We show that the HUSH complex contributes to de novo repression and DNA methylation of an SVA retrotransposon reporter. By using naïve versus primed mouse pluripotent stem cells, we reveal a critical role for the HUSH complex in naïve cells, implicating it in programming epigenetic marks in development. Although the HUSH component FAM208A binds to endogenous retroviruses (ERVs) and long interspersed element-1s (LINE-1s or L1s), it is mainly required to repress evolutionarily young L1s (mouse-specific lineages <5 million years old). TRIM28, in contrast, is necessary to repress both ERVs and young L1s. Genes co-repressed by TRIM28 and FAM208A are evolutionarily young, or exhibit tissue-specific expression, are enriched in young L1s, and display evidence for regulation through LTR promoters. Finally, we demonstrate that the HUSH complex is also required to repress L1 elements in human cells. Overall, these data indicate that the HUSH complex and TRIM28 co-repress young retrotransposons and new genes rewired by retrotransposon noncoding DNA.
Assuntos
Genoma Humano , Proteínas Nucleares/genética , Retroelementos/genética , Proteína 28 com Motivo Tripartido/genética , Animais , Metilação de DNA/genética , Retrovirus Endógenos/genética , Heterocromatina/genética , Humanos , Elementos Nucleotídeos Longos e Dispersos/genética , Camundongos , Regiões Promotoras GenéticasRESUMO
CD58 is an adhesion molecule that is known to play a critical role in costimulation of effector cells and is intrinsic to immune synapse structure. Herein, we describe a virally encoded gene that inhibits CD58 surface expression. Human cytomegalovirus (HCMV) UL148 was necessary and sufficient to promote intracellular retention of CD58 during HCMV infection. Blocking studies with antagonistic anti-CD58 mAb and an HCMV UL148 deletion mutant (HCMV∆UL148) with restored CD58 expression demonstrated that the CD2/CD58 axis was essential for the recognition of HCMV-infected targets by CD8+ HCMV-specific cytotoxic T lymphocytes (CTLs). Further, challenge of peripheral blood mononuclear cells ex vivo with HCMV∆UL148 increased both CTL and natural killer (NK) cell degranulation against HCMV-infected cells, including NK-driven antibody-dependent cellular cytotoxicity, showing that UL148 is a modulator of the function of multiple effector cell subsets. Our data stress the effect of HCMV immune evasion functions on shaping the immune response, highlighting the capacity for their potential use in modulating immunity during the development of anti-HCMV vaccines and HCMV-based vaccine vectors.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Evasão da Resposta Imune , Imunidade Celular , Células Matadoras Naturais/imunologia , Proteínas Virais de Fusão/imunologia , Linfócitos T CD8-Positivos/patologia , Linhagem Celular Transformada , Citomegalovirus/genética , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/patologia , Humanos , Células Matadoras Naturais/patologia , Proteínas Virais de Fusão/genéticaRESUMO
BK polyomavirus (BKPyV) is a small DNA virus that establishes a life-long persistent infection in the urinary tract of most people. BKPyV is known to cause severe morbidity in renal transplant recipients and can lead to graft rejection. The simple 5.2-kbp double-stranded DNA (dsDNA) genome expresses just seven known proteins; thus, it relies heavily on the host machinery to replicate. How the host proteome changes over the course of infection is key to understanding this host-virus interplay. Here, for the first time quantitative temporal viromics has been used to quantify global changes in >9,000 host proteins in two types of primary human epithelial cells throughout 72 h of BKPyV infection. These data demonstrate the importance of cell cycle progression and pseudo-G2 arrest in effective BKPyV replication, along with a surprising lack of an innate immune response throughout the whole virus replication cycle. BKPyV thus evades pathogen recognition to prevent activation of innate immune responses in a sophisticated manner.IMPORTANCE BK polyomavirus can cause serious problems in immune-suppressed patients, in particular, kidney transplant recipients who can develop polyomavirus-associated kidney disease. In this work, we have used advanced proteomics techniques to determine the changes to protein expression caused by infection of two independent primary cell types of the human urinary tract (kidney and bladder) throughout the replication cycle of this virus. Our findings have uncovered new details of a specific form of cell cycle arrest caused by this virus, and, importantly, we have identified that this virus has a remarkable ability to evade detection by host cell defense systems. In addition, our data provide an important resource for the future study of kidney epithelial cells and their infection by urinary tract pathogens.
Assuntos
Vírus BK/fisiologia , Pontos de Checagem da Fase G2 do Ciclo Celular , Imunidade Inata , Infecções por Polyomavirus/imunologia , Infecções por Polyomavirus/metabolismo , Infecções por Polyomavirus/virologia , Proteoma , Proteômica , Biomarcadores , Proteínas de Ciclo Celular/metabolismo , Resistência à Doença , Suscetibilidade a Doenças/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Proteômica/métodos , Fluxo de TrabalhoRESUMO
Misfolded or damaged proteins are typically targeted for destruction by proteasome-mediated degradation, but the mammalian ubiquitin machinery involved is incompletely understood. Here, using forward genetic screens in human cells, we find that the proteasome-mediated degradation of the soluble misfolded reporter, mCherry-CL1, involves two ER-resident E3 ligases, MARCH6 and TRC8. mCherry-CL1 degradation is routed via the ER membrane and dependent on the hydrophobicity of the substrate, with complete stabilisation only observed in double knockout MARCH6/TRC8 cells. To identify a more physiological correlate, we used quantitative mass spectrometry and found that TRC8 and MARCH6 depletion altered the turnover of the tail-anchored protein heme oxygenase-1 (HO-1). These E3 ligases associate with the intramembrane cleaving signal peptide peptidase (SPP) and facilitate the degradation of HO-1 following intramembrane proteolysis. Our results highlight how ER-resident ligases may target the same substrates, but work independently of each other, to optimise the protein quality control of selected soluble and tail-anchored proteins.
Assuntos
Heme Oxigenase-1/metabolismo , Proteínas de Membrana/metabolismo , Receptores de Superfície Celular/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Retículo Endoplasmático/enzimologia , Técnicas de Inativação de Genes , Células HeLa , Heme Oxigenase-1/genética , Humanos , Espectrometria de Massas , Proteínas de Membrana/genética , Proteólise , Receptores de Superfície Celular/genética , Ubiquitina-Proteína Ligases/genéticaRESUMO
TRIM5α is an antiviral, cytoplasmic, E3 ubiquitin (Ub) ligase that assembles on incoming retroviral capsids and induces their premature dissociation. It inhibits reverse transcription of the viral genome and can also synthesize unanchored polyubiquitin (polyUb) chains to stimulate innate immune responses. Here, we show that TRIM5α employs the E2 Ub-conjugating enzyme Ube2W to anchor the Lys63-linked polyUb chains in a process of TRIM5α auto-ubiquitination. Chain anchoring is initiated, in cells and in vitro, through Ube2W-catalyzed monoubiquitination of TRIM5α. This modification serves as a substrate for the elongation of anchored Lys63-linked polyUb chains, catalyzed by the heterodimeric E2 enzyme Ube2N/Ube2V2. Ube2W targets multiple TRIM5α internal lysines with Ub especially lysines 45 and 50, rather than modifying the N-terminal amino group, which is instead αN-acetylated in cells. E2 depletion or Ub mutation inhibits TRIM5α ubiquitination in cells and restores restricted viral reverse transcription, but not infection. Our data indicate that the stepwise formation of anchored Lys63-linked polyUb is a critical early step in the TRIM5α restriction mechanism and identify the E2 Ub-conjugating cofactors involved.