Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ann Neurol ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767012

RESUMO

OBJECTIVE: This study was undertaken to investigate the effects of dietary caffeine intake on striatal dopamine function and clinical symptoms in Parkinson disease in a cross-sectional and longitudinal setting. METHODS: One hundred sixty-three early Parkinson disease patients and 40 healthy controls were investigated with [123I]FP-CIT single photon emission computed tomography, and striatal dopamine transporter binding was evaluated in association with the level of daily coffee consumption and clinical measures. After a median interval of 6.1 years, 44 patients with various caffeine consumption levels underwent clinical and imaging reexamination including blood caffeine metabolite profiling. RESULTS: Unmedicated early Parkinson disease patients with high coffee consumption had 8.3 to 15.4% lower dopamine transporter binding in all studied striatal regions than low consumers, after accounting for age, sex, and motor symptom severity. Higher caffeine consumption was further associated with a progressive decline in striatal binding over time. No significant effects of caffeine on motor function were observed. Blood analyses demonstrated a positive correlation between caffeine metabolites after recent caffeine intake and dopamine transporter binding in the ipsilateral putamen. INTERPRETATION: Chronic caffeine intake prompts compensatory and cumulative dopamine transporter downregulation, consistent with caffeine's reported risk reduction in Parkinson disease. However, this decline does not manifest in symptom changes. Transiently increased dopamine transporter binding after recent caffeine intake has implications for dopaminergic imaging guidelines. ANN NEUROL 2024.

2.
Hum Genomics ; 18(1): 11, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38303026

RESUMO

BACKGROUND: Individual assessment of CYP enzyme activities can be challenging. Recently, the potato alkaloid solanidine was suggested as a biomarker for CYP2D6 activity. Here, we aimed to characterize the sensitivity and specificity of solanidine as a CYP2D6 biomarker among Finnish volunteers with known CYP2D6 genotypes. RESULTS: Using non-targeted metabolomics analysis, we identified 9152 metabolite features in the fasting plasma samples of 356 healthy volunteers. Machine learning models suggested strong association between CYP2D6 genotype-based phenotype classes with a metabolite feature identified as solanidine. Plasma solanidine concentration was 1887% higher in genetically poor CYP2D6 metabolizers (gPM) (n = 9; 95% confidence interval 755%, 4515%; P = 1.88 × 10-11), 74% higher in intermediate CYP2D6 metabolizers (gIM) (n = 89; 27%, 138%; P = 6.40 × 10-4), and 35% lower in ultrarapid CYP2D6 metabolizers (gUM) (n = 20; 64%, - 17%; P = 0.151) than in genetically normal CYP2D6 metabolizers (gNM; n = 196). The solanidine metabolites m/z 444 and 430 to solanidine concentration ratios showed even stronger associations with CYP2D6 phenotypes. Furthermore, the areas under the receiver operating characteristic and precision-recall curves for these metabolic ratios showed equal or better performances for identifying the gPM, gIM, and gUM phenotype groups than the other metabolites, their ratios to solanidine, or solanidine alone. In vitro studies with human recombinant CYP enzymes showed that solanidine was metabolized mainly by CYP2D6, with a minor contribution from CYP3A4/5. In human liver microsomes, the CYP2D6 inhibitor paroxetine nearly completely (95%) inhibited the metabolism of solanidine. In a genome-wide association study, several variants near the CYP2D6 gene associated with plasma solanidine metabolite ratios. CONCLUSIONS: These results are in line with earlier studies and further indicate that solanidine and its metabolites are sensitive and specific biomarkers for measuring CYP2D6 activity. Since potato consumption is common worldwide, this biomarker could be useful for evaluating CYP2D6-mediated drug-drug interactions and to improve prediction of CYP2D6 activity in addition to genotyping.


Assuntos
Citocromo P-450 CYP2D6 , Diosgenina , Estudo de Associação Genômica Ampla , Humanos , Citocromo P-450 CYP2D6/genética , Paroxetina/farmacologia , Biomarcadores , Genótipo
3.
Eur J Nutr ; 62(2): 713-726, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36198920

RESUMO

PURPOSE: To identify fasting serum metabolites associated with WG intake in a free-living population adjusted for potential confounders. METHODS: We selected fasting serum samples at baseline from a subset (n = 364) of the prospective population-based Kuopio Ischaemic Heart Disease Risk Factor Study (KIHD) cohort. The samples were analyzed using nontargeted metabolomics with liquid chromatography coupled with mass spectrometry (LC-MS). Association with WG intake was investigated using both random forest followed by linear regression adjusted for age, BMI, smoking, physical activity, energy and alcohol consumption, and partial Spearman correlation adjusted for the same covariates. Features selected by any of these models were shortlisted for annotation. We then checked if we could replicate the findings in an independent subset from the same cohort (n = 200). RESULTS: Direct associations were observed between WG intake and pipecolic acid betaine, tetradecanedioic acid, four glucuronidated alkylresorcinols (ARs), and an unknown metabolite both in discovery and replication cohorts. The associations remained significant (FDR<0.05) even after adjustment for the confounders in both cohorts. Sinapyl alcohol was positively correlated with WG intake in both cohorts after adjustment for the confounders but not in linear models in the replication cohort. Some microbial metabolites, such as indolepropionic acid, were positively correlated with WG intake in the discovery cohort, but the correlations were not replicated in the replication cohort. CONCLUSIONS: The identified associations between WG intake and the seven metabolites after adjusting for confounders in both discovery and replication cohorts suggest the potential of these metabolites as robust biomarkers of WG consumption.


Assuntos
Metabolômica , Grãos Integrais , Humanos , Estudos Prospectivos , Reprodutibilidade dos Testes , Metabolômica/métodos , Jejum , Biomarcadores
4.
Eur J Clin Pharmacol ; 79(12): 1709-1711, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37864723

RESUMO

METHODS: Fifty-six (56) patients scheduled for arthroplasty, received 7-day extended-release buprenorphine transdermal patches (5 µg/h) for five consecutive weeks, starting two weeks prior to the surgery. Simultaneous plasma and cerebrospinal fluid (CSF) samples were collected during spinal anesthesia. RESULTS: Median buprenorphine plasma and CSF concentrations at steady-state were 54 pg/mL (range 8.6 - 167 pg/mL) and 1.6 pg/mL (0.30 - 7.3 pg/mL), respectively. The median CSF/plasma -ratio was 3% (range 0.35 - 16%). Large between-subject variability was observed in the measured buprenorphine concentrations within the study population.


Assuntos
Buprenorfina , Osteoartrite , Humanos , Analgésicos Opioides , Adesivo Transdérmico , Administração Cutânea
5.
J Headache Pain ; 24(1): 38, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37038131

RESUMO

BACKGROUND: Engaging the endocannabinoid system through inhibition of monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), degrading endocannabinoids (endoCBs) 2-arachidonoylglycerol (2-AG) and anandamide (AEA), was proposed as a promising approach to ameliorate migraine pain. However, the activity of MAGL and FAAH and action of endoCB on spiking activity of meningeal afferents, from which migraine pain originates, has not been explored thus far. Therefore, we here explored the analgesic effects of endoCB enhancement in rat and human meningeal tissues. METHODS: Both MAGL and FAAH activity and local 2-AG and AEA levels were measured by activity-based protein profiling (ABPP) and LC-MS/MS, respectively, in rat meninges obtained from hemiskulls of P38-P40 Wistar rats and human meninges from elderly patients undergoing non-migraine related neurosurgery. The action on endoCBs upon administration of novel dual MAGL/FAAH inhibitor AKU-005 on meningeal afferents excitability was tested by investigating paired KCl-induced spiking and validation with local (co-)application of either AEA or 2-AG. Finally, the specific TRPV1 agonist capsaicin and blocker capsazepine were tested. RESULTS: The basal level of 2-AG exceeded that of AEA in rat and human meninges. KCl-induced depolarization doubled the level of AEA. AKU-005 slightly increased spontaneous spiking activity whereas the dual MAGL/FAAH inhibitor significantly decreased excitation of nerve fibres induced by KCl. Similar inhibitory effects on meningeal afferents were observed with local applications of 2-AG or AEA. The action of AKU-005 was reversed by CB1 antagonist AM-251, implying CB1 receptor involvement in the anti-nociceptive effect. The inhibitory action of AEA was also reversed by AM-251, but not with the TRPV1 antagonist capsazepine. Data cluster analysis revealed that both AKU-005 and AEA largely increased long-term depression-like meningeal spiking activity upon paired KCl-induced spiking. CONCLUSIONS: In the meninges, high anti-nociceptive 2-AG levels can tonically counteract meningeal signalling, whereas AEA can be engaged on demand by local depolarization. AEA-mediated anti-nociceptive effects through CB1 receptors have therapeutic potential. Together with previously detected MAGL activity in trigeminal ganglia, dual MAGL/FAAH inhibitor AKU-005 appears promising as migraine treatment.


Assuntos
Endocanabinoides , Transtornos de Enxaqueca , Ratos , Humanos , Animais , Idoso , Endocanabinoides/farmacologia , Monoglicerídeos/uso terapêutico , Cromatografia Líquida , Nociceptividade , Carbamatos/farmacologia , Carbamatos/uso terapêutico , Ratos Wistar , Espectrometria de Massas em Tandem , Dor/tratamento farmacológico , Amidoidrolases/metabolismo , Amidoidrolases/uso terapêutico , Transtornos de Enxaqueca/tratamento farmacológico , Monoacilglicerol Lipases/metabolismo
6.
Metabolomics ; 17(2): 20, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33515103

RESUMO

INTRODUCTION: Maternal metabolism changes substantially during pregnancy. However, few studies have used metabolomics technologies to characterize changes across gestation. OBJECTIVES AND METHODS: We applied liquid chromatography-mass spectrometry (LC-MS) based non-targeted metabolomics to determine whether the metabolic profile of serum differs throughout the pregnancy between pre-eclamptic and healthy women in the FINNPEC (Finnish Genetics of Preeclampsia Consortium) Study. Serum samples were available from early and late pregnancy. RESULTS: Progression of pregnancy had large-scale effects to the serum metabolite profile. Altogether 50 identified metabolites increased and 49 metabolites decreased when samples of early pregnancy were compared to samples of late pregnancy. The metabolic signatures of pregnancy were largely shared in pre-eclamptic and healthy women, only urea, monoacylglyceride 18:1 and glycerophosphocholine were identified to be increased in the pre-eclamptic women when compared to healthy controls. CONCLUSIONS: Our study highlights the need of large-scale longitudinal metabolomic studies in non-complicated pregnancies before more detailed understanding of metabolism in adverse outcomes could be provided. Our findings are one of the first steps for a broader metabolic understanding of the physiological changes caused by pregnancy per se.


Assuntos
Cromatografia Líquida/métodos , Metabolômica/métodos , Pré-Eclâmpsia/sangue , Gravidez/sangue , Espectrometria de Massas em Tandem/métodos , Adulto , Índice de Massa Corporal , Estudos de Casos e Controles , Feminino , Humanos , Metaboloma
7.
Alcohol Clin Exp Res ; 45(11): 2207-2216, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34590334

RESUMO

BACKGROUND: Ghrelin may influence several alcohol-related behaviors in animals and humans by modulating central and/or peripheral biological pathways. The aim of this exploratory analysis was to investigate associations between ghrelin administration and the human circulating metabolome during alcohol exposure in nontreatment seeking, heavy drinking individuals with alcohol use disorder (AUD). METHODS: We used serum samples from a randomized, crossover, double-blind, placebo-controlled human laboratory study with intravenous (IV) ghrelin or placebo infusion in two experiments. During each session, participants received a loading dose (3 µg/kg) followed by continuous infusion (16.9 ng/kg/min) of acyl ghrelin or placebo. The first experiment included an IV alcohol self-administration (IV-ASA) session and the second experiment included an IV alcohol clamp (IV-AC) session, both with the counterbalanced infusion of ghrelin or placebo. Serum metabolite profiles were analyzed from repeated blood samples collected during each session. RESULTS: In both experiments, ghrelin infusion was associated with an altered serum metabolite profile, including significantly increased levels of cortisol (IV-ASA q-value = 0.0003 and IV-AC q < 0.0001), corticosterone (IV-ASA q = 0.0202 and IV-AC q < 0.0001), and glycochenodeoxycholic acid (IV-ASA q = 0.0375 and IV-AC q = 0.0013). In the IV-ASA experiment, ghrelin infusion increased levels of cortisone (q = 0.0352) and fatty acids 18:1 (q = 0.0406) and 18:3 (q = 0.0320). Moreover, in the IV-AC experiment, ghrelin infusion significantly increased levels of glycocholic acid (q < 0.0001) and phenylalanine (q = 0.0458). CONCLUSION: IV ghrelin infusion, combined with IV alcohol administration, was associated with increases in the circulating metabolite levels of corticosteroids and glycine-conjugated bile acids, among other changes. Further research is needed to understand the role that metabolomic changes play in the complex interaction between ghrelin and alcohol.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Alcoolismo/tratamento farmacológico , Estimulantes do Sistema Nervoso Central/administração & dosagem , Fissura/efeitos dos fármacos , Grelina/administração & dosagem , Adulto , Consumo de Bebidas Alcoólicas/terapia , Estudos Cross-Over , Relação Dose-Resposta a Droga , Método Duplo-Cego , Etanol , Humanos , Infusões Intravenosas , Masculino
8.
Eur J Nutr ; 60(1): 193-201, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32246261

RESUMO

PURPOSE: High-maternal caffeine intake during pregnancy may be harmful for perinatal outcomes and future child health, but the level of fetal cumulative exposure has been difficult to measure thus far. Here, we present maternal dietary caffeine intake during the last trimester and its correlation to caffeine content in newborn hair after birth. METHODS: Maternal third trimester diets and dietary caffeine intake were prospectively collected in Kuopio Birth Cohort (KuBiCo) using a 160-item food frequency questionnaire (n = 2840). Newborn hair was collected within 48 h after birth and analyzed by high-resolution mass spectrometry (HRMS) for caffeine (n = 316). Correlation between dietary caffeine intake and neonatal hair caffeine content was evaluated from 203 mother-child pairs. RESULTS: Mean dietary caffeine intake was 167 mg/days (95% CI 162-172  mg/days), of which coffee comprised 81%. Caffeine in the maternal diet and caffeine content in newborn hair correlated significantly (r = 0.50; p < 0.001). Older, multiparous, overweight women, and smokers had the highest caffeine levels in the maternal diet, as well as in their newborn babies' hair. CONCLUSION: Caffeine exposure, estimated from newborn hair samples, reflects maternal third trimester dietary caffeine intake and introduces a new method to assess fetal cumulative caffeine exposure. Further studies to evaluate the effects of caffeine exposure on both perinatal and postnatal outcomes are warranted, since over 40% of pregnant women consume caffeine more than the current suggested recommendations (European Food Safety Association, EFSA recommendations).


Assuntos
Cafeína , Café , Criança , Dieta , Ingestão de Alimentos , Feminino , Humanos , Recém-Nascido , Gravidez , Terceiro Trimestre da Gravidez
9.
Bioorg Chem ; 112: 104921, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33933805

RESUMO

l-Type amino acid transporter 1 (LAT1) is an interesting protein due to its peculiar expression profile. It can be utilized not only as a carrier for improved or targeted drug delivery, e.g., into the brain but also as a target protein by which amino acid supply can be restricted, e.g., from the cancer cells. The recognition and binding processes of LAT1-ligands, such as amino acids and clinically used small molecules, including l-dopa, gabapentin, and melphalan, are today well-known. Binding to LAT1 is crucial, particularly when designing the LAT1-inhibitors. However, it will not guarantee effective translocation across the cell membrane via LAT1, which is a definite requirement for LAT1-substrates, such as drugs that elicit their pharmacological effects inside the cells. Therefore, in the present study, the accumulation of known LAT1-utilizing compounds into the selected LAT1-expressing cancer cells (MCF-7) was explored experimentally over a time period. The differences found among the transport efficiency and affinity of the studied compounds for LAT1 were subsequently explained by docking the ligands into the human LAT1 model (based on the recent cryo-electron microscopy structure). Thus, the findings of this study clarify the favorable structural requirements of the size, shape, and polarity of the ligands that support the translocation and effective transport across the cell membrane via LAT1. This knowledge can be applied in future drug design to attain improved or targeted drug delivery and hence, successful LAT1-utilizing drugs with increased therapeutic effects.


Assuntos
Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Leucina/farmacologia , Relação Dose-Resposta a Droga , Humanos , Leucina/química , Células MCF-7 , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
10.
Xenobiotica ; 51(3): 268-278, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33289420

RESUMO

Catechol-O-methyltransferase (COMT) methylates both endogenous and exogenous catechol compounds to inactive and safe metabolites. We first optimised conditions for a convenient and sensitive continuous fluorescence-based 6-O-methylation assay of esculetin, which we used for investigating the COMT activity in human, mouse, rat, dog, rabbit, and sheep liver cytosols and microsomes and in ten different rat tissues. Furthermore, we compared the inhibition potencies and mechanisms of two clinically used COMT inhibitors, entacapone and tolcapone, in these species. In most tissues, the COMT activity was at least three times higher in cytosol than in microsomes. In the rat, the highest COMT activity was found in the liver, followed by kidney, ileum, thymus, spleen, lung, pancreas, heart, brain, and finally, skeletal muscle. Entacapone and tolcapone were characterised as highly potent mixed type tight-binding inhibitors. The competitive inhibition type dominated over the uncompetitive inhibition with entacapone, whereas uncompetitive inhibition dominated with tolcapone. Rats, dogs, pigs, and sheep are high COMT activity species, in contrast to humans, mice, and rabbits; COMT activity is highest in the liver. Both entacapone and tolcapone are potent COMT inhibitors, but their inhibition mechanisms differ.


Assuntos
Inibidores de Catecol O-Metiltransferase/farmacologia , Catecol O-Metiltransferase/metabolismo , Catecóis/farmacologia , Nitrilas/farmacologia , Escopoletina/metabolismo , Tolcapona/farmacologia , Umbeliferonas/metabolismo , Animais , Catálise , Cães , Humanos , Metilação , Camundongos , Coelhos , Ratos , Ovinos , Suínos
11.
Addict Biol ; 26(6): e13035, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33745230

RESUMO

Heavy alcohol use is one of the top causes of disease and death in the world. The brain is a key organ affected by heavy alcohol use. Here, our aim was to measure changes caused by heavy alcohol use in the human brain metabolic profile. We analyzed human postmortem frontal cortex and cerebrospinal fluid (CSF) samples from males with a history of heavy alcohol use (n = 74) and controls (n = 74) of the Tampere Sudden Death Series cohort. We used a nontargeted liquid chromatography mass spectrometry-based metabolomics method. We observed differences between the study groups in the metabolite levels of both frontal cortex and CSF samples, for example, in amino acids and derivatives, and acylcarnitines. There were more significant alterations in the metabolites of frontal cortex than in CSF. In the frontal cortex, significant alterations were seen in the levels of neurotransmitters (e.g., decreased levels of GABA and acetylcholine), acylcarnitines (e.g., increased levels of acylcarnitine 4:0), and in some metabolites associated with alcohol metabolizing enzymes (e.g., increased levels of 2-piperidone). Some of these changes were also significant in the CSF samples (e.g., elevated 2-piperidone levels). Overall, these results show the metabolites associated with neurotransmitters, energy metabolism and alcohol metabolism, were altered in human postmortem frontal cortex and CSF samples of persons with a history of heavy alcohol use.


Assuntos
Alcoolismo/patologia , Líquido Cefalorraquidiano/efeitos dos fármacos , Lobo Frontal/patologia , Adulto , Idoso , Autopsia , Índice de Massa Corporal , Carnitina/análogos & derivados , Carnitina/metabolismo , Cromatografia Líquida , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Neurotransmissores/metabolismo , Gravidade do Paciente
12.
Int J Mol Sci ; 22(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34299347

RESUMO

Efflux transporters, namely ATP-binding cassette (ABC), are one of the primary reasons for cancer chemoresistance and the clinical failure of chemotherapy. Ganciclovir (GCV) is an antiviral agent used in herpes simplex virus thymidine kinase (HSV-TK) gene therapy. In this therapy, HSV-TK gene is delivered together with GCV into cancer cells to activate the phosphorylation process of GCV to active GCV-triphosphate, a DNA polymerase inhibitor. However, GCV interacts with efflux transporters that are responsible for the resistance of HSV-TK/GCV therapy. In the present study, it was explored whether GCV and its more lipophilic derivative (1) could inhibit effluxing of another chemotherapeutic, methotrexate (MTX), out of the human breast cancer cells. Firstly, it was found that the combination of GCV and MTX was more hemocompatible than the corresponding combination with compound 1. Secondly, both GCV and compound 1 enhanced the cellular accumulation of MTX in MCF-7 cells, the MTX exposure being 13-21 times greater compared to the MTX uptake alone. Subsequently, this also reduced the number of viable cells (41-56%) and increased the number of late apoptotic cells (46-55%). Moreover, both GCV and compound 1 were found to interact with breast cancer resistant protein (BCRP) more effectively than multidrug-resistant proteins (MRPs) in these cells. Since the expression of BCRP was higher in MCF-7 cells than in MDA-MB-231 cells, and the cellular uptake of GCV and compound 1 was smaller but increased in the presence of BCRP-selective inhibitor (Fumitremorgin C) in MCF-7 cells, we concluded that the improved apoptotic effects of higher MTX exposure were raised mainly from the inhibition of BCRP-mediated efflux of MTX. However, the effects of GCV and its derivatives on MTX metabolism and the quantitative expression of MTX metabolizing enzymes in various cancer cells need to be studied more thoroughly in the future.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Ganciclovir/farmacologia , Metotrexato/farmacologia , Proteínas de Neoplasias/metabolismo , Antivirais/farmacologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Células MCF-7 , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo
13.
Alcohol Clin Exp Res ; 44(12): 2457-2467, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33067815

RESUMO

BACKGROUND: Heavy alcohol use has been associated with altered circulating metabolome. We investigated whether changes in the circulating metabolome precede incident diagnoses of alcohol-related diseases. METHODS: This is a prospective population-based cohort study where the participants were 42- to 60-year-old males at baseline (years 1984 to 1989). Subjects who received a diagnosis for an alcohol-related disease during the follow-up were defined as cases (n = 92, mean follow-up of 13.6 years before diagnosis). Diagnoses were obtained through linkage with national health registries. We used 2 control groups: controls who self-reported similar levels of alcohol use as compared to cases at baseline (alcohol-controls, n = 92), and controls who self-reported only light drinking at baseline (control-controls, n = 90). A nontargeted metabolomics analysis of baseline serum samples was performed. RESULTS: There were significant differences between the study groups in the baseline serum levels of 64 metabolites: in amino acids (e.g., glutamine [FDR-corrected q-value = 0.0012]), glycerophospholipids (e.g., lysophosphatidylcholine 16:1 [q = 0.0008]), steroids (e.g., cortisone [q = 0.00001]), and fatty acids (e.g., palmitoleic acid [q = 0.0031]). The main finding was that after controlling for baseline levels of self-reported alcohol use and the biomarker of alcohol use, gamma-glutamyl transferase, and when compared to both alcohol-control and control-control group, the alcohol-case group had lower serum levels of asparagine (Cohen's d = -0.48 [95% CI -0.78 to -0.19] and d = -0.49 [-0.78 to -0.19], respectively) and serotonin (d = -0.45 [-0.74 to -0.15], and d = -0.46 [-0.75 to -0.16], respectively), with no difference between the two control groups (asparagine d = 0.00 [-0.29 to 0.29] and serotonin d = -0.01 [-0.30 to 0.29]). CONCLUSIONS: Changes in the circulating metabolome, especially lower serum levels of asparagine and serotonin, are associated with later diagnoses of alcohol-related diseases, even after adjustment for the baseline level of alcohol use.


Assuntos
Transtornos Relacionados ao Uso de Álcool/metabolismo , Metaboloma , Adulto , Transtornos Relacionados ao Uso de Álcool/sangue , Transtornos Relacionados ao Uso de Álcool/diagnóstico , Aminoácidos/sangue , Estudos de Casos e Controles , Ácidos Graxos/sangue , Finlândia , Seguimentos , Glicerofosfolipídeos/sangue , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
14.
Toxicol Appl Pharmacol ; 370: 56-64, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30880216

RESUMO

Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that are still causing potentially harmful effects to humans and wildlife. While the adverse health effects of PCBs have been extensively studied for decades, little is known about the effects specifically caused by the less potent, yet abundant non-dioxin-like congeners (NDL-PCBs). Here a non-targeted metabolic profiling of rat offspring exposed in utero and lactationally to total doses of 0, 300 or 1000 mg/kg body weight of ultrapure PCB 180 is reported. Serum samples from 5 male, and 5 female offspring from each group taken 12 weeks after birth were analyzed using UHPLC-qTOF-MS system, and subsequent metabolite alterations were studied. Statistical analysis revealed gender and dose-dependent alterations in serum metabolite levels at doses that did not adversely influence maternal or offspring body weight development. Male rats exhibited a higher number of altered metabolites, as well as stronger dose-dependency. A total of 51 metabolites were identified based on spectral matching. Most notably, 20 of these were glycerophospholipids, mainly lysophosphocholines with systematically decreased concentrations especially in the high-dose males. Other major metabolite groups include amino acids, their derivatives and carnitines. Our findings are consistent with the earlier reported liver effects, as well as neurodevelopmental and neurobehavioral effects of PCB 180. They also emphasize the potential value of metabolomics in characterizing toxic effects and in identifying sensitive biomarkers with potential future use in health risk assessment.


Assuntos
Feto/efeitos dos fármacos , Feto/metabolismo , Lactação , Metaboloma/efeitos dos fármacos , Bifenilos Policlorados/toxicidade , Aminoácidos/sangue , Animais , Carnitina/sangue , Relação Dose-Resposta a Droga , Feminino , Glicerofosfolipídeos/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Lisofosfatidilcolinas/sangue , Masculino , Gravidez , Ratos , Caracteres Sexuais
15.
Molecules ; 24(11)2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31212689

RESUMO

Verbascoside is found in many medicinal plant families such as Verbenaceae. Important biological activities have been ascribed to verbascoside. Investigated in this study is the potential of verbascoside as an adjuvant during tuberculosis treatment. The present study reports on the in vitro metabolism in human hepatic microsomes and cytosol incubations as well as the presence and quantity of verbascoside within Lippia scaberrima. Additionally, studied are the inhibitory properties on human hepatic CYP enzymes together with antioxidant and cytotoxic properties. The results yielded no metabolites in the hydrolysis or cytochrome P450 (CYP) oxidation incubations. However, five different methylated conjugates of verbascoside could be found in S-adenosylmethionine incubation, three different sulphate conjugates with 3'-phosphoadenosine 5'-phosphosulfate (PAPS) incubation with human liver samples, and very low levels of glucuronide metabolites after incubation with recombinant human uridine 5'-diphospho-glucuronosyltransferase (UGT) 1A7, UGT1A8, and UGT1A10. Additionally, verbascoside showed weak inhibitory potency against CYP1A2 and CYP1B1 with IC50 values of 83 µM and 86 µM, respectively. Potent antioxidant and low cytotoxic potential were observed. Based on these data, verbascoside does not possess any clinically relevant CYP-mediated interaction potential, but it has effective biological activity. Therefore, verbascoside could be considered as a lead compound for further drug development and as an adjuvant during tuberculosis treatment.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Glucosídeos/farmacologia , Fenóis/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Compostos de Bifenilo/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Ativação Enzimática/efeitos dos fármacos , Glucosídeos/química , Células Hep G2 , Humanos , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/metabolismo , Oxirredução/efeitos dos fármacos , Fenóis/química , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Picratos/antagonistas & inibidores , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
16.
Diabetologia ; 61(4): 849-861, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29349498

RESUMO

AIMS/HYPOTHESIS: The aims of the present work were to identify plasma metabolites that predict future type 2 diabetes, to investigate the changes in identified metabolites among individuals who later did or did not develop type 2 diabetes over time, and to assess the extent to which inclusion of predictive metabolites could improve risk prediction. METHODS: We established a nested case-control study within the Swedish prospective population-based Västerbotten Intervention Programme cohort. Using untargeted liquid chromatography-MS metabolomics, we analysed plasma samples from 503 case-control pairs at baseline (a median time of 7 years prior to diagnosis) and samples from a subset of 187 case-control pairs at 10 years of follow-up. Discriminative metabolites between cases and controls at baseline were optimally selected using a multivariate data analysis pipeline adapted for large-scale metabolomics. Conditional logistic regression was used to assess associations between discriminative metabolites and future type 2 diabetes, adjusting for several known risk factors. Reproducibility of identified metabolites was estimated by intra-class correlation over the 10 year period among the subset of healthy participants; their systematic changes over time in relation to diagnosis among those who developed type 2 diabetes were investigated using mixed models. Risk prediction performance of models made from different predictors was evaluated using area under the receiver operating characteristic curve, discrimination improvement index and net reclassification index. RESULTS: We identified 46 predictive plasma metabolites of type 2 diabetes. Among novel findings, phosphatidylcholines (PCs) containing odd-chain fatty acids (C19:1 and C17:0) and 2-hydroxyethanesulfonate were associated with the likelihood of developing type 2 diabetes; we also confirmed previously identified predictive biomarkers. Identified metabolites strongly correlated with insulin resistance and/or beta cell dysfunction. Of 46 identified metabolites, 26 showed intermediate to high reproducibility among healthy individuals. Moreover, PCs with odd-chain fatty acids, branched-chain amino acids, 3-methyl-2-oxovaleric acid and glutamate changed over time along with disease progression among diabetes cases. Importantly, we found that a combination of five of the most robustly predictive metabolites significantly improved risk prediction if added to models with an a priori defined set of traditional risk factors, but only a marginal improvement was achieved when using models based on optimally selected traditional risk factors. CONCLUSIONS/INTERPRETATION: Predictive metabolites may improve understanding of the pathophysiology of type 2 diabetes and reflect disease progression, but they provide limited incremental value in risk prediction beyond optimal use of traditional risk factors.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/epidemiologia , Metabolômica , Adulto , Estudos de Casos e Controles , Cromatografia Líquida , Progressão da Doença , Feminino , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Fosfatidilcolinas/sangue , Plasma/metabolismo , Estudos Prospectivos , Sistema de Registros , Reprodutibilidade dos Testes , Medição de Risco , Fatores de Risco , Suécia
17.
J Neurosci Res ; 95(9): 1858-1870, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28134996

RESUMO

Our aim was to apply a robust non-drug induced sensorimotor test battery to assess the efficacy of neurorestorative therapies on the motor deficits caused by partial unilateral 6-OHDA lesion mimicking early stage PD. Since the 6-OHDA lesion protocols to induce partial DA depletion in striatum vary extensively between laboratories, we evaluated the associations between different intrastriatal 6-OHDA doses (1 X 0-20 and 2 X 0-30 µg), striatal DA depletion (HPLC-ECD) and D-amphetamine induced rotation to identify a lesion protocol that would produce 40-60% striatal DA depletion. Doses ≥ 6 µg produced a significant DA depletion (ANOVA, P < 0.0001). 6-OHDA dose range (6-14 µg) causing 40-60% DA depletion induced very variable rotational responses. Next, intrastriatal 1 × 10 and 1 × 14 µg doses were compared with a full lesion (10 µg into the medial forebrain bundle) with regard to their effects on adjusting step, cylinder, and vibrissae test performance. A combined ipsilateral score (average of each test) was found more sensitive in distinguishing between different lesions than any test alone. Finally, five-week treadmill exercise starting two weeks post-lesion was able to restore impaired limb use (combined score; mixed model, P < 0.05) and striatal DA depletion (ANOVA, P < 0.05) in rats with partial lesion (1 × 10 µg). Notably, D-amphetamine induced rotation significantly decreased between weeks one to seven post-lesion (t-test, P < 0.01). In conclusion, intrastriatal 1 × 10 µg of 6-OHDA produces 40-60% striatal DA depletion robustly, and the combined ipsilateral score provides an efficient means for testing of the efficacy of neurorestorative or neuroprotective treatments for PD. © 2017 Wiley Periodicals, Inc.


Assuntos
Encéfalo/efeitos dos fármacos , Transtornos Motores/induzido quimicamente , Transtornos Motores/etiologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/complicações , Animais , Comportamento Animal/efeitos dos fármacos , Antagonistas de Dopamina/administração & dosagem , Antagonistas de Dopamina/toxicidade , Relação Dose-Resposta a Droga , Masculino , Atividade Motora/efeitos dos fármacos , Oxidopamina/administração & dosagem , Oxidopamina/toxicidade , Ratos
18.
J Sci Food Agric ; 97(7): 2182-2190, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27611634

RESUMO

BACKGROUND: The non-edible parts of horticultural crops, such as leaves, contain substantial amounts of valuable bioactive compounds which are currently only little exploited. For example, strawberry (Fragaria × ananassa) leaves may be a promising bioresource for diverse health-related applications. However, product standardization sets a real challenge, especially when the leaf material comes from varying cultivars. The first step towards better quality control of berry fruit leaf-based ingredients and supplements is to understand metabolites present and their stability in different plant cultivars, so this study surveyed the distribution of potentially bioactive strawberry leaf metabolites in six different strawberry cultivars. Non-targeted metabolite profiling analysis using LC/qTOF-ESI-MS with data processing via principal component analysis and k-means clustering analysis was utilized to examine differences and commonalities between the leaf metabolite profiles. RESULTS: Quercetin and kaempferol derivatives were the dominant flavonol groups in strawberry leaves. Previously described and novel caffeic and chlorogenic acid derivatives were among the major phenolic acids. In addition, ellagitannins were one of the distinguishing compound classes in strawberry leaves. In general, strawberry leaves also contained high levels of octadecatrienoic acid derivatives, precursors of valuable odour compounds. CONCLUSION: The specific bioactive compounds found in the leaves of different strawberry cultivars offer the potential for the selection of optimized leaf materials for added-value food and non-food applications. © 2016 Society of Chemical Industry.


Assuntos
Fragaria/química , Extratos Vegetais/química , Folhas de Planta/química , Cromatografia Líquida de Alta Pressão , Flavonoides/análise , Flavonoides/metabolismo , Fragaria/metabolismo , Frutas/química , Frutas/metabolismo , Quempferóis/análise , Quempferóis/metabolismo , Espectrometria de Massas , Fenóis/análise , Fenóis/metabolismo , Extratos Vegetais/metabolismo , Folhas de Planta/metabolismo
19.
J Pharmacol Exp Ther ; 359(1): 62-72, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27451409

RESUMO

Monoacylglycerol lipase (MAGL) is a serine hydrolase that acts as a principal degradative enzyme for the endocannabinoid 2-arachidonoylglycerol (2-AG). In addition to terminating the signaling function of 2-AG, MAGL liberates arachidonic acid to be used as a primary source for neuroinflammatory prostaglandin synthesis in the brain. MAGL activity also contributes to cancer pathogenicity by producing precursors for tumor-promoting bioactive lipids. Pharmacological inhibitors of MAGL provide valuable tools for characterization of MAGL and 2-AG signaling pathways. They also hold great therapeutic potential to treat several pathophysiological conditions, such as pain, neurodegenerative disorders, and cancer. We have previously reported piperidine triazole urea, {4-[bis-(benzo[d][1,3]dioxol-5-yl)methyl]-piperidin-1-yl}(1H-1,2,4-triazol-1-yl)methanone (JJKK-048), to be an ultrapotent and highly selective inhibitor of MAGL in vitro. Here, we characterize in vivo effects of JJKK-048. Acute in vivo administration of JJKK-048 induced a massive increase in mouse brain 2-AG levels without affecting brain anandamide levels. JJKK-048 appeared to be extremely potent in vivo. Activity-based protein profiling revealed that JJKK-048 maintains good selectivity toward MAGL over other serine hydrolases. Our results are also the first to show that JJKK-048 promoted significant analgesia in a writhing test with a low dose that did not cause cannabimimetic side effects. At a high dose, JJKK-048 induced analgesia both in the writhing test and in the tail-immersion test, as well as hypomotility and hyperthermia, but not catalepsy.


Assuntos
Benzodioxóis/farmacologia , Inibidores Enzimáticos/farmacologia , Monoacilglicerol Lipases/antagonistas & inibidores , Piperidinas/farmacologia , Animais , Ácidos Araquidônicos/metabolismo , Comportamento Animal/efeitos dos fármacos , Benzodioxóis/efeitos adversos , Benzodioxóis/farmacocinética , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Endocanabinoides/metabolismo , Inibidores Enzimáticos/efeitos adversos , Inibidores Enzimáticos/farmacocinética , Glicerídeos/metabolismo , Hipotermia/induzido quimicamente , Masculino , Camundongos , Nociceptividade/efeitos dos fármacos , Piperidinas/efeitos adversos , Piperidinas/farmacocinética , Pirazóis/farmacologia , Rimonabanto
20.
Neurochem Res ; 41(10): 2797-2809, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27412117

RESUMO

Valproic acid (VPA) has been used to treat epileptic seizures for decades, but it may also possess therapeutic potential in other nervous system diseases. However, VPA is extensively bound to plasma proteins, asymmetrically transported across the blood-brain barrier and metabolized to toxic species in the liver, which all contribute to its severe off-target adverse effects and possible drug-drug interactions. In this study, we evaluated seven amino acid prodrugs of VPA that were targeted to utilize L-type amino acid transporter 1 (LAT1), if they could alter the brain uptake mechanism and systemic pharmacokinetics of VPA. All prodrugs had affinity for LAT1 studied as competitive inhibition of [14C]-L-leucine in human breast cancer (MCF-7) cell line. However, since the ester prodrugs were unstable they were not studied further, instead the corresponding amide prodrugs were used to evaluate their systemic pharmacokinetics in rats and the uptake mechanism via LAT1 into the rat brain. All amide prodrugs were bound to a lesser extent to plasma proteins than VPA and this being independent of the prodrug concentration. Amide prodrugs were also delivered into the brain after intravenous bolus injection. One of the prodrug showed greater brain uptake and high selectivity for LAT1 and it was able to release VPA slowly within the brain. Therefore, it was concluded that the VPA brain concentrations can be stabilized as well as the problematic pharmacokinetic profile can be altered by a LAT1-selective prodrug.


Assuntos
Aminoácidos/metabolismo , Encéfalo/efeitos dos fármacos , Ácido Valproico/farmacocinética , Aminoácidos/administração & dosagem , Animais , Transporte Biológico/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Humanos , Injeções Intravenosas , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Ratos , Ácido Valproico/administração & dosagem , Ácido Valproico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA