Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Am J Hum Genet ; 111(7): 1330-1351, 2024 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-38815585

RESUMO

Epigenetic dysregulation has emerged as an important etiological mechanism of neurodevelopmental disorders (NDDs). Pathogenic variation in epigenetic regulators can impair deposition of histone post-translational modifications leading to aberrant spatiotemporal gene expression during neurodevelopment. The male-specific lethal (MSL) complex is a prominent multi-subunit epigenetic regulator of gene expression and is responsible for histone 4 lysine 16 acetylation (H4K16ac). Using exome sequencing, here we identify a cohort of 25 individuals with heterozygous de novo variants in MSL complex member MSL2. MSL2 variants were associated with NDD phenotypes including global developmental delay, intellectual disability, hypotonia, and motor issues such as coordination problems, feeding difficulties, and gait disturbance. Dysmorphisms and behavioral and/or psychiatric conditions, including autism spectrum disorder, and to a lesser extent, seizures, connective tissue disease signs, sleep disturbance, vision problems, and other organ anomalies, were observed in affected individuals. As a molecular biomarker, a sensitive and specific DNA methylation episignature has been established. Induced pluripotent stem cells (iPSCs) derived from three members of our cohort exhibited reduced MSL2 levels. Remarkably, while NDD-associated variants in two other members of the MSL complex (MOF and MSL3) result in reduced H4K16ac, global H4K16ac levels are unchanged in iPSCs with MSL2 variants. Regardless, MSL2 variants altered the expression of MSL2 targets in iPSCs and upon their differentiation to early germ layers. Our study defines an MSL2-related disorder as an NDD with distinguishable clinical features, a specific blood DNA episignature, and a distinct, MSL2-specific molecular etiology compared to other MSL complex-related disorders.


Assuntos
Epilepsia , Transtornos do Neurodesenvolvimento , Ubiquitina-Proteína Ligases , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Deficiências do Desenvolvimento/genética , Metilação de DNA/genética , Epigênese Genética , Epilepsia/genética , Histonas/metabolismo , Histonas/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Ubiquitina-Proteína Ligases/metabolismo
2.
Hum Mol Genet ; 32(17): 2681-2692, 2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37364051

RESUMO

Orofacial clefts, including cleft lip and palate (CL/P) and neural tube defects (NTDs) are among the most common congenital anomalies, but knowledge of the genetic basis of these conditions remains incomplete. The extent to which genetic risk factors are shared between CL/P, NTDs and related anomalies is also unclear. While identification of causative genes has largely focused on coding and loss of function mutations, it is hypothesized that regulatory mutations account for a portion of the unidentified heritability. We found that excess expression of Grainyhead-like 2 (Grhl2) causes not only spinal NTDs in Axial defects (Axd) mice but also multiple additional defects affecting the cranial region. These include orofacial clefts comprising midline cleft lip and palate and abnormalities of the craniofacial bones and frontal and/or basal encephalocele, in which brain tissue herniates through the cranium or into the nasal cavity. To investigate the causative mutation in the Grhl2Axd strain, whole genome sequencing identified an approximately 4 kb LTR retrotransposon insertion that disrupts the non-coding regulatory region, lying approximately 300 base pairs upstream of the 5' UTR. This insertion also lies within a predicted long non-coding RNA, oriented on the reverse strand, which like Grhl2 is over-expressed in Axd (Grhl2Axd) homozygous mutant embryos. Initial analysis of the GRHL2 upstream region in individuals with NTDs or cleft palate revealed rare or novel variants in a small number of cases. We hypothesize that mutations affecting the regulation of GRHL2 may contribute to craniofacial anomalies and NTDs in humans.


Assuntos
Anormalidades Múltiplas , Fenda Labial , Fissura Palatina , Defeitos do Tubo Neural , Disrafismo Espinal , Animais , Humanos , Camundongos , Anormalidades Múltiplas/genética , Fenda Labial/genética , Fissura Palatina/genética , Encefalocele/genética , Mutação , Defeitos do Tubo Neural/genética , Disrafismo Espinal/genética
3.
FASEB J ; 38(1): e23346, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38095297

RESUMO

Folate deficiency contribute to neural tube defects (NTDs) which could be rescued by folate supplementation. However, the underlying mechanisms are still not fully understood. Besides, there is considerable controversy concerning the forms of folate used for supplementation. To address this controversy, we prepared culture medium with different forms of folate, folic acid (FA), and 5-methyltetrahydrofolate (5mTHF), at concentrations of 5 µM, 500 nM, 50 nM, and folate free, respectively. Mouse embryonic fibroblasts (MEFs) were treated with different folates continuously for three passages, and cell proliferation and F-actin were monitored. We determined that compared to 5mTHF, FA showed stronger effects on promoting cell proliferation and F-actin formation. We also found that FOLR1 protein level was positively regulated by folate concentration and the non-canonical Wnt/planar cell polarity (PCP) pathway signaling was significantly enriched among different folate conditions in RNA-sequencing analyses. We demonstrated for the first time that FOLR1 could promote the transcription of Vangl2, one of PCP core genes. The transcription of Vangl2 was down-regulated under folate-deficient condition, which resulted in a decrease in PCP activity and F-actin formation. In summary, we identified a distinct advantage of FA in cell proliferation and F-actin formation over 5mTHF, as well as demonstrating that FOLR1 could promote transcription of Vangl2 and provide a new mechanism by which folate deficiency can contribute to the etiology of NTDs.


Assuntos
Deficiência de Ácido Fólico , Defeitos do Tubo Neural , Animais , Camundongos , Ácido Fólico/metabolismo , Actinas/metabolismo , Receptor 1 de Folato/genética , Receptor 1 de Folato/metabolismo , Polaridade Celular/genética , Fibroblastos/metabolismo , Via de Sinalização Wnt , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/metabolismo , Deficiência de Ácido Fólico/metabolismo
4.
J Med Genet ; 61(6): 549-552, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38272662

RESUMO

Fetal hydrops as detected by prenatal ultrasound usually carries a poor prognosis depending on the underlying aetiology. We describe the prenatal and postnatal clinical course of two unrelated female probands in whom de novo heterozygous missense variants in the planar cell polarity gene CELSR1 were detected using exome sequencing. Using several in vitro assays, we show that the CELSR1 p.(Cys1318Tyr) variant disrupted the subcellular localisation, affected cell-cell junction, impaired planar cell polarity signalling and lowered proliferation rate. These observations suggest that deleterious rare CELSR1 variants could be a possible cause of fetal hydrops.


Assuntos
Heterozigoto , Hidropisia Fetal , Mutação de Sentido Incorreto , Humanos , Feminino , Mutação de Sentido Incorreto/genética , Hidropisia Fetal/genética , Hidropisia Fetal/patologia , Gravidez , Derrame Pleural/genética , Derrame Pleural/patologia , Caderinas/genética , Sequenciamento do Exoma , Polaridade Celular/genética
5.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34916285

RESUMO

Spina bifida (SB) is a debilitating birth defect caused by multiple gene and environment interactions. Though SB shows non-Mendelian inheritance, genetic factors contribute to an estimated 70% of cases. Nevertheless, identifying human mutations conferring SB risk is challenging due to its relative rarity, genetic heterogeneity, incomplete penetrance, and environmental influences that hamper genome-wide association studies approaches to untargeted discovery. Thus, SB genetic studies may suffer from population substructure and/or selection bias introduced by typical candidate gene searches. We report a population based, ancestry-matched whole-genome sequence analysis of SB genetic predisposition using a systems biology strategy to interrogate 298 case-control subject genomes (149 pairs). Genes that were enriched in likely gene disrupting (LGD), rare protein-coding variants were subjected to machine learning analysis to identify genes in which LGD variants occur with a different frequency in cases versus controls and so discriminate between these groups. Those genes with high discriminatory potential for SB significantly enriched pathways pertaining to carbon metabolism, inflammation, innate immunity, cytoskeletal regulation, and essential transcriptional regulation consistent with their having impact on the pathogenesis of human SB. Additionally, an interrogation of conserved noncoding sequences identified robust variant enrichment in regulatory regions of several transcription factors critical to embryonic development. This genome-wide perspective offers an effective approach to the interrogation of coding and noncoding sequence variant contributions to rare complex genetic disorders.


Assuntos
Genoma Humano , Disrafismo Espinal/genética , Estudos de Casos e Controles , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Biologia de Sistemas , Fatores de Transcrição/genética
6.
Am J Med Genet A ; 191(6): 1546-1556, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36942736

RESUMO

The etiology of biliary atresia (BA) is unknown, but recent studies suggest a role for rare protein-altering variants (PAVs). Exome sequencing data from the National Birth Defects Prevention Study on 54 child-parent trios, one child-mother duo, and 1513 parents of children with other birth defects were analyzed. Most (91%) cases were isolated BA. We performed (1) a trio-based analysis to identify rare de novo, homozygous, and compound heterozygous PAVs and (2) a case-control analysis using a sequence kernel-based association test to identify genes enriched with rare PAVs. While we replicated previous findings on PKD1L1, our results do not suggest that recurrent de novo PAVs play important roles in BA susceptibility. In fact, our finding in NOTCH2, a disease gene associated with Alagille syndrome, highlights the difficulty in BA diagnosis. Notably, IFRD2 has been implicated in other gastrointestinal conditions and warrants additional study. Overall, our findings strengthen the hypothesis that the etiology of BA is complex.


Assuntos
Atresia Biliar , Humanos , Atresia Biliar/epidemiologia , Atresia Biliar/genética , Atresia Biliar/diagnóstico , Exoma/genética , Homozigoto , Pais , Estudos de Casos e Controles , Proteínas de Membrana/genética
7.
Hum Mutat ; 43(12): 2021-2032, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36054333

RESUMO

Neural tube defects (NTDs) are congenital malformations resulting from abnormal embryonic development of the brain, spine, or spinal column. The genetic etiology of human NTDs remains poorly understood despite intensive investigation. CIC, homolog of the Capicua transcription repressor, has been reported to interact with ataxin-1 (ATXN1) and participate in the pathogenesis of spinocerebellar ataxia type 1. Our previous study demonstrated that CIC loss of function (LoF) variants contributed to the cerebral folate deficiency syndrome by downregulating folate receptor 1 (FOLR1) expression. Given the importance of folate transport in neural tube formation, we hypothesized that CIC variants could contribute to increased risk for NTDs by depressing embryonic folate concentrations. In this study, we examined CIC variants from whole-genome sequencing (WGS) data of 140 isolated spina bifida cases and identified eight missense variants of CIC gene. We tested the pathogenicity of the observed variants through multiple in vitro experiments. We determined that CIC variants decreased the FOLR1 protein level and planar cell polarity (PCP) pathway signaling in a human cell line (HeLa). In a murine cell line (NIH3T3), CIC loss of function variants downregulated PCP signaling. Taken together, this study provides evidence supporting CIC as a risk gene for human NTD.


Assuntos
Defeitos do Tubo Neural , Proteínas Repressoras , Disrafismo Espinal , Animais , Feminino , Humanos , Camundongos , Gravidez , Receptor 1 de Folato/genética , Ácido Fólico , Mutação de Sentido Incorreto , Defeitos do Tubo Neural/genética , Células NIH 3T3 , Disrafismo Espinal/genética , Células HeLa , Proteínas Repressoras/genética
8.
Hum Mol Genet ; 29(18): 3132-3144, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32969478

RESUMO

Neural tube defects (NTDs) are a group of severe congenital malformations caused by a failure of neural tube closure during early embryonic development. Although extensively investigated, the genetic etiology of NTDs remains poorly understood. FKBP8 is critical for proper mammalian neural tube closure. Fkbp8-/- mouse embryos showed posterior NTDs consistent with a diagnosis of spina bifida (SB). To date, no publication has reported any association between FKBP8 and human NTDs. Using Sanger sequencing on genomic DNA samples from 472 SB and 565 control samples, we identified five rare (MAF ≤ 0.001) deleterious variants in SB patients, while no rare deleterious variant was identified in the controls (P = 0.0191). p.Glu140* affected FKBP8 localization to the mitochondria and created a truncated form of the FKBP8 protein, thus impairing its interaction with BCL2 and ultimately leading to an increase in cellular apoptosis. p.Ser3Leu, p.Lys315Asn and p.Ala292Ser variants decreased FKBP8 protein level. p.Lys315Asn further increased the cellular apoptosis. RNA sequencing on anterior and posterior tissues isolated from Fkbp8-/- and wildtype mice at E9.5 and E10.5 showed that Fkbp8-/- embryos have an abnormal expression profile within tissues harvested at posterior sites, thus leading to a posterior NTD. Moreover, we found that Fkbp8 knockout mouse embryos have abnormal expression of Wnt3a and Nkx2.9 during the early stage of neural tube development, perhaps also contributing to caudal specific NTDs. These findings provide evidence that functional variants of FKBP8 are risk factors for SB, which may involve a novel mechanism by which Fkbp8 mutations specifically cause SB in mice.


Assuntos
Proteínas de Homeodomínio/genética , Disrafismo Espinal/genética , Proteínas de Ligação a Tacrolimo/genética , Fatores de Transcrição/genética , Proteína Wnt3A/genética , Animais , Apoptose/genética , Feminino , Predisposição Genética para Doença , Humanos , Recém-Nascido , Masculino , Camundongos , Camundongos Knockout , Malformações do Sistema Nervoso , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/patologia , Fatores de Risco , Disrafismo Espinal/patologia
9.
J Med Genet ; 58(7): 484-494, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32820034

RESUMO

Background Cerebral folate deficiency (CFD) syndrome is characterised by a low concentration of 5-methyltetrahydrofolate in cerebrospinal fluid, while folate levels in plasma and red blood cells are in the low normal range. Mutations in several folate pathway genes, including FOLR1 (folate receptor alpha, FRα), DHFR (dihydrofolate reductase) and PCFT (proton coupled folate transporter) have been previously identified in patients with CFD. Methods In an effort to identify causal mutations for CFD, we performed whole exome sequencing analysis on eight CFD trios and identified eight de novo mutations in seven trios. Results Notably, we found a de novo stop gain mutation in the capicua (CIC) gene. Using 48 sporadic CFD samples as a validation cohort, we identified three additional rare variants in CIC that are putatively deleterious mutations. Functional analysis indicates that CIC binds to an octameric sequence in the promoter regions of folate transport genes: FOLR1, PCFT and reduced folate carrier (Slc19A1; RFC1). The CIC nonsense variant (p.R353X) downregulated FOLR1 expression in HeLa cells as well as in the induced pluripotent stem cell (iPSCs) derived from the original CFD proband. Folate binding assay demonstrated that the p.R353X variant decreased cellular binding of folic acid in cells. Conclusion This study indicates that CIC loss of function variants can contribute to the genetic aetiology of CFD through regulating FOLR1 expression. Our study described the first mutations in a non-folate pathway gene that can contribute to the aetiology of CFD.


Assuntos
Cérebro/metabolismo , Receptor 1 de Folato/genética , Deficiência de Ácido Fólico/líquido cefalorraquidiano , Mutação com Perda de Função , Doenças do Sistema Nervoso/líquido cefalorraquidiano , Proteínas Repressoras/genética , Tetra-Hidrofolatos/líquido cefalorraquidiano , Células Cultivadas , Regulação para Baixo , Feminino , Receptor 1 de Folato/deficiência , Deficiência de Ácido Fólico/genética , Células HEK293 , Humanos , Masculino , Doenças do Sistema Nervoso/genética , Distrofias Neuroaxonais , Linhagem , Análise de Sequência de DNA
10.
Hum Mol Genet ; 28(2): 200-208, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30256984

RESUMO

Spina bifida (SB) is a complex disorder of failed neural tube closure during the first month of human gestation, with a suspected etiology involving multiple gene and environmental interactions. GPR161 is a ciliary G-protein coupled receptor that regulates Sonic Hedgehog (Shh) signaling. Gpr161 null and hypomorphic mutations cause neural tube defects (NTDs) in mouse models. Herein we show that several genes involved in Shh and Wnt signaling were differentially expressed in the Gpr161 null embryos using RNA-seq analysis. To determine whether there exists an association between GPR161 and SB in humans, we performed direct Sanger sequencing on the GPR161 gene in a cohort of 384 SB patients and 190 healthy controls. We identified six rare variants of GPR161 in six SB cases, of which two of the variants were novel and did not exist in any databases. Both of these variants were predicted to be damaging by SIFT and/or PolyPhen analysis. The novel GPR161 rare variants mislocalized to the primary cilia, dysregulated Shh and Wnt signaling and inhibited cell proliferation in vitro. Our results demonstrate that GPR161 mutations cause NTDs via dysregulation of Shh and Wnt signaling in mice, and novel rare variants of GPR161 can be risk factors for SB in humans.


Assuntos
Mutação , Receptores Acoplados a Proteínas G/genética , Disrafismo Espinal/genética , Animais , Estudos de Casos e Controles , Perfilação da Expressão Gênica , Genes Dominantes , Proteínas Hedgehog/metabolismo , Humanos , Recém-Nascido , Camundongos , Camundongos Knockout , Células NIH 3T3 , Defeitos do Tubo Neural/genética , Fenótipo , Fatores de Risco , Transdução de Sinais , Disrafismo Espinal/embriologia , Proteínas Wnt/metabolismo
11.
Hum Mol Genet ; 28(10): 1726-1737, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30689861

RESUMO

Mutations in IRF6, TFAP2A and GRHL3 cause orofacial clefting syndromes in humans. However, Tfap2a and Grhl3 are also required for neurulation in mice. Here, we found that homeostasis of Irf6 is also required for development of the neural tube and associated structures. Over-expression of Irf6 caused exencephaly, a rostral neural tube defect, through suppression of Tfap2a and Grhl3 expression. Conversely, loss of Irf6 function caused a curly tail and coincided with a reduction of Tfap2a and Grhl3 expression in tail tissues. To test whether Irf6 function in neurulation was conserved, we sequenced samples obtained from human cases of spina bifida and anencephaly. We found two likely disease-causing variants in two samples from patients with spina bifida. Overall, these data suggest that the Tfap2a-Irf6-Grhl3 genetic pathway is shared by two embryologically distinct morphogenetic events that previously were considered independent during mammalian development. In addition, these data suggest new candidates to delineate the genetic architecture of neural tube defects and new therapeutic targets to prevent this common birth defect.


Assuntos
Proteínas de Ligação a DNA/genética , Fatores Reguladores de Interferon/genética , Neurulação/genética , Fator de Transcrição AP-2/genética , Fatores de Transcrição/genética , Animais , Sequência Conservada/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Camundongos , Mutação , Tubo Neural/crescimento & desenvolvimento , Tubo Neural/patologia , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/patologia , Transdução de Sinais/genética , Disrafismo Espinal/genética , Disrafismo Espinal/patologia
12.
Proc Natl Acad Sci U S A ; 115(18): 4690-4695, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29666258

RESUMO

Periconceptional folic acid (FA) supplementation significantly reduces the prevalence of neural tube defects (NTDs). Unfortunately, some NTDs are FA resistant, and as such, NTDs remain a global public health concern. Previous studies have identified SLC25A32 as a mitochondrial folate transporter (MFT), which is capable of transferring tetrahydrofolate (THF) from cellular cytoplasm to the mitochondria in vitro. Herein, we show that gene trap inactivation of Slc25a32 (Mft) in mice induces NTDs that are folate (5-methyltetrahydrofolate, 5-mTHF) resistant yet are preventable by formate supplementation. Slc25a32gt/gt embryos die in utero with 100% penetrant cranial NTDs. 5-mTHF supplementation failed to promote normal neural tube closure (NTC) in mutant embryos, while formate supplementation enabled the majority (78%) of knockout embryos to complete NTC. A parallel genetic study in human subjects with NTDs identified biallelic loss of function SLC25A32 variants in a cranial NTD case. These data demonstrate that the loss of functional Slc25a32 results in cranial NTDs in mice and has also been observed in a human NTD patient.


Assuntos
Formiatos/farmacologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Defeitos do Tubo Neural , Tubo Neural , Animais , Transporte Biológico Ativo/genética , Humanos , Camundongos , Camundongos Transgênicos , Tubo Neural/embriologia , Tubo Neural/patologia , Defeitos do Tubo Neural/embriologia , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/patologia , Defeitos do Tubo Neural/prevenção & controle
13.
Hum Mutat ; 41(4): 786-799, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31898828

RESUMO

DNA damage response (DDR) genes orchestrating the network of DNA repair, cell cycle control, are essential for the rapid proliferation of neural progenitor cells. To date, the potential association between specific DDR genes and the risk of human neural tube defects (NTDs) has not been investigated. Using whole-genome sequencing and targeted sequencing, we identified significant enrichment of rare deleterious RAD9B variants in spina bifida cases compared to controls (8/409 vs. 0/298; p = .0241). Among the eight identified variants, the two frameshift mutants and p.Gln146Glu affected RAD9B nuclear localization. The two frameshift mutants also decreased the protein level of RAD9B. p.Ser354Gly, as well as the two frameshifts, affected the cell proliferation rate. Finally, p.Ser354Gly, p.Ser10Gly, p.Ile112Met, p.Gln146Glu, and the two frameshift variants showed a decreased ability for activating JNK phosphorylation. RAD9B knockdowns in human embryonic stem cells profoundly affected early differentiation through impairing PAX6 and OCT4 expression. RAD9B deficiency impeded in vitro formation of neural organoids, a 3D cell culture model for human neural development. Furthermore, the RNA-seq data revealed that loss of RAD9B dysregulates cell adhesion genes during organoid formation. These results represent the first demonstration of a DDR gene as an NTD risk factor in humans.


Assuntos
Proteínas de Ciclo Celular/deficiência , Predisposição Genética para Doença , Defeitos do Tubo Neural/genética , Disrafismo Espinal/genética , Estudos de Casos e Controles , Linhagem Celular , Dano ao DNA , Reparo do DNA , Células-Tronco Embrionárias/metabolismo , Imunofluorescência , Expressão Gênica , Humanos , Mutação com Perda de Função , Mutação , Defeitos do Tubo Neural/diagnóstico , Neurônios/metabolismo , Medição de Risco , Fatores de Risco , Disrafismo Espinal/diagnóstico
14.
Neurogenetics ; 21(3): 217-225, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32388773

RESUMO

Select single-nucleotide variants in planar cell polarity (PCP) genes are associated with increased risk for neural tube defects (NTDs). However, whether copy number variants (CNVs) in PCP genes contribute to NTDs is unknown. Considering that CNVs are implicated in several human developmental disorders, we hypothesized that CNVs in PCP genes may be causative factors to human NTDs. DNA from umbilical cord tissues of NTD-affected fetuses and parental venous blood samples were collected. We performed a quantitative analysis of copy numbers of all exon regions in the VANGL1, VANGL2, CELSR1, SCRIB, DVL2, DVL3, and PTK7 genes using a CNVplex assay. Quantitative real-time PCR (qPCR) was carried out to confirm the results of CNV analysis. As a result, 16 CNVs were identified among the NTDs. Of these CNVs, 5 loci were identified in 11 NTD probands with CNVs involving DVL2 (exons 1-15), VANGL1 (exons 1-7, exon 8), and VANGL2 (exons 5-8, exons 7 and 8). One CNV (DVL2 exons 1-15) was a duplication and the remaining 15 CNVs were deletions. Eleven CNVs were confirmed by qPCR. One de novo CNV in VANGL1 and one DVL2 were detected from two cases. Compared with unaffected control populations in 1000 Genome, ExAC, MARRVEL, DGV, and dbVar databases, the frequencies of de novo deletion in VANGL1 (1.14%) and de novo duplication in DVL2 (0.57%) were significantly higher in our NTD subjects (p < 0.05). This study demonstrates that de novo CNVs in PCP genes, notably deletions in VANGL1 and gains in DVL2, could contribute to the risk of NTDs.


Assuntos
Polaridade Celular/genética , Variações do Número de Cópias de DNA , Deficiências do Desenvolvimento/genética , Defeitos do Tubo Neural/genética , Caderinas/genética , Proteínas de Transporte/genética , Moléculas de Adesão Celular/genética , Proteínas Desgrenhadas/genética , Éxons , Deleção de Genes , Dosagem de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Mutação , Reação em Cadeia da Polimerase em Tempo Real , Receptores Proteína Tirosina Quinases/genética , Risco , Proteínas Supressoras de Tumor/genética , Cordão Umbilical/metabolismo
15.
Hum Genet ; 139(10): 1299-1314, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32356230

RESUMO

Extensive studies that have sought causative mutation(s) for neural tube defects (NTDs) have yielded limited positive findings to date. One possible reason for this is that many studies have been confined to analyses of germline mutations and so may have missed other, non-germline mutations in NTD cases. We hypothesize that somatic mutations of planar polarity pathway (PCP) genes may play a role in the development of NTDs. Torrent™ Personal Genome Machine™ (PGM) sequencing was designed for selected PCP genes in paired DNA samples extracted from the tissues of lesion sites and umbilical cord from 48 cases. Sanger sequencing was used to validate the detected mutations. The source and distribution of the validated mutations in tissues from different germ layers were investigated. Subcellular location, western blotting, and luciferase assays were performed to better understand the effects of the mutations on protein localization, protein level, and pathway signaling. ix somatic mutations were identified and validated, which showed diverse distributions in different tissues. Three somatic mutations were novel/rare: CELSR1 p.Gln2125His, FZD6 p.Gln88Glu, and VANGL1 p.Arg374His. FZD6 p.Gln88Glu caused mislocalization of its protein from the cytoplasm to the nucleus, and disrupted the colocalization of CELSR1 and FZD6. This mutation affected non-canonical WNT signaling in luciferase assays. VANGL1 p.Arg374His impaired the co-localization of CELSR1 and VANGL1, increased the protein levels of VANGL1, and influenced cell migration. In all, 7/48 (14.5%) of the studied NTD cases contained somatic PCP mutations. Somatic mutations in PCP genes (e.g., FZD6 and VANGL1) are associated with human NTDs, and they may occur in different stages and regions during embryonic development, resulting in a varied distribution in fetal tissues/organs.


Assuntos
Caderinas/genética , Proteínas de Transporte/genética , Receptores Frizzled/genética , Proteínas de Membrana/genética , Mutação , Defeitos do Tubo Neural/genética , Tubo Neural/metabolismo , Transporte Ativo do Núcleo Celular/genética , Sequência de Aminoácidos , Animais , Caderinas/metabolismo , Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Feminino , Feto , Receptores Frizzled/metabolismo , Expressão Gênica , Genoma Humano , Células HEK293 , Humanos , Masculino , Proteínas de Membrana/metabolismo , Tubo Neural/anormalidades , Defeitos do Tubo Neural/diagnóstico , Defeitos do Tubo Neural/metabolismo , Defeitos do Tubo Neural/patologia , Gravidez , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Sequenciamento Completo do Genoma
16.
Prenat Diagn ; 40(9): 1047-1055, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32468575

RESUMO

Every year nearly 6 percent of children worldwide are born with a serious congenital malformation, resulting in death or lifelong disability. In the United States, birth defects remain one of the leading causes of infant mortality. Among the common structural congenital defects are conditions known as neural tube defects (NTDs). These are a class of malformation of the brain and spinal cord where the neural tube fails to close during the neurulation. Although NTDs remain among the most pervasive and debilitating of all human developmental anomalies, there is insufficient understanding of their etiology. Previous studies have proposed that complex birth defects like NTDs are likely omnigenic, involving interconnected gene regulatory networks with associated signals throughout the genome. Advances in technologies have allowed researchers to more critically investigate regulatory gene networks in ever increasing detail, informing our understanding of the genetic basis of NTDs. Employing a systematic analysis of these complex birth defects using massively parallel DNA sequencing with stringent bioinformatic algorithms, it is possible to approach a greater level of understanding of the genomic architecture underlying NTDs. Herein, we present a brief overview of different approaches undertaken in our laboratory to dissect out the genetics of susceptibility to NTDs. This involves the use of mouse models to identify candidate genes, as well as large scale whole genome/whole exome (WGS/WES) studies to interrogate the genomic landscape of NTDs. The goal of this research is to elucidate the gene-environment interactions contributing to NTDs, thus encouraging global research efforts in their prevention.


Assuntos
Genômica/métodos , Defeitos do Tubo Neural/genética , Animais , Anticonvulsivantes/efeitos adversos , Anormalidades Congênitas/epidemiologia , Anormalidades Congênitas/etiologia , Anormalidades Congênitas/genética , Modelos Animais de Doenças , Feminino , Genômica/tendências , Humanos , Tubo Neural/embriologia , Tubo Neural/metabolismo , Defeitos do Tubo Neural/epidemiologia , Neurulação/genética , Gravidez , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Efeitos Tardios da Exposição Pré-Natal/genética , Sequenciamento do Exoma
17.
J Nutr ; 149(2): 295-303, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30689919

RESUMO

BACKGROUND: The risk of neural tube defect (NTD)-affected pregnancies is reduced with adequate folic acid intake during early pregnancy. However, NTDs have been observed among offspring of women with adequate folic acid intake. Some of these women are possibly not absorbing enough folic acid. Because lactase deficiency can lead to poor nutrient absorption, we hypothesized that lactase-deficient women will be at increased risk of having offspring with NTDs. OBJECTIVE: We examined the association between maternal rs4988235 (a lactase deficiency genetic marker) and NTDs in offspring. METHODS: We conducted a case-control study using data from the National Birth Defects Prevention Study, United States, 1997-2009, restricting to non-Hispanic white (NHW) and Hispanic women. Cases were women with an offspring with an NTD (n = 378 NHW, 207 Hispanic), and controls were women with an offspring without a birth defect (n = 461 NHW, 165 Hispanic). Analyses were conducted separately by race/ethnicity, using logistic regression. Women with the CC genotype were categorized as being lactase deficient. To assess potential effect modification, analyses were stratified by lactose intake, folic acid supplementation, dietary folate, and diet quality. RESULTS: Among NHW women, the odds of being lactase deficient were greater among cases compared with controls (OR: 1.37; 95% CI: 1.02, 1.82). Among Hispanic women, the odds of being lactase deficient were significantly lower among cases compared with controls (OR: 0.50, 95% CI: 0.33, 0.77). The association differed when stratified by lactose intake in NHW women (higher odds among women who consumed ≥12 g lactose/1000 kcal) and by dietary folate in Hispanic women (opposite direction of associations). The association did not differ when stratified by folic acid supplementation or diet quality. CONCLUSIONS: Our findings suggest that maternal lactase deficiency is associated with NTDs in offspring. However, we observed opposite directions of effect by race/ethnicity that could not be definitively explained.


Assuntos
Predisposição Genética para Doença , Lactase/genética , Defeitos do Tubo Neural/genética , Polimorfismo de Nucleotídeo Único , Adulto , Estudos de Casos e Controles , Ácido Fólico/administração & dosagem , Ácido Fólico/metabolismo , Deficiência de Ácido Fólico/complicações , Marcadores Genéticos , Genótipo , Hispânico ou Latino , Humanos , Lactase/deficiência , Mães , Defeitos do Tubo Neural/enzimologia , Razão de Chances , Estados Unidos , Adulto Jovem
18.
Mol Genet Metab ; 124(1): 94-100, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29573971

RESUMO

Neural tube defects (NTDs) are considered to be a complex genetic disorder, although the identity of the genetic factors remains largely unknown. Mouse model studies suggest a multifactorial oligogenic pattern of inheritance for NTDs, yet evidence from published human studies is surprisingly absent. In the present study, targeted next-generation sequencing was performed to screen for DNA variants in the entire coding regions and intron-exon boundaries of targeted genes using DNA samples from 510 NTD cases. These candidate genes were PCP genes, including VANGL1, VANGL2, CELSR1, SCRIB, DVL2, DVL3 and PTK7. Candidate variants were validated using Sanger sequencing. A total of 397 single nucleotide variants(SNVs) were identified with a mean depth of approximately 570×. Of these identified SNVs, 74 were predicted to affect protein function and had a minor allele frequency of <0.01 or unknown. Among these 74 missense SNVs, 10 were identified from six NTD cases that carried two mutated genes. Of the six NTD cases, three spina bifida cases and one anencephaly case carried digenic variants in the CELSR1 and SCRIB gene; one anencephaly case carried variants in the CELSR1 and DVL3 gene; and one spina bifida case carried variants in the PTK7 and SCRIB genes. Three cases that parental samples were available were confirmed to be compound heterozygous. None of the digenic variants were found in the 1000 genome database. The findings imply that genetic variation might interact in a digenic fashion to generate the visible NTD phenotypes and emphasize the importance of these genetic interactions in the development of NTDs in humans.


Assuntos
Polaridade Celular/genética , Variação Genética , Defeitos do Tubo Neural/genética , Caderinas/genética , Proteínas de Transporte/genética , Moléculas de Adesão Celular/genética , Análise Mutacional de DNA , Proteínas Desgrenhadas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Recém-Nascido , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Mutação , Defeitos do Tubo Neural/sangue , Fenótipo , Polimorfismo de Nucleotídeo Único , Receptores Proteína Tirosina Quinases/genética , Proteínas Supressoras de Tumor/genética
19.
Kidney Int ; 90(6): 1274-1284, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27597235

RESUMO

The mammalian kidney contains nephrons comprising glomeruli and tubules joined to ureteric bud-derived collecting ducts. It has a characteristic bean-like shape, with near-complete rostrocaudal symmetry around the hilum. Here we show that Celsr1, a planar cell polarity (PCP) gene implicated in neural tube morphogenesis, is required for ureteric tree growth in early development and later in gestation prevents tubule overgrowth. We also found an interaction between Celsr1 and Vangl2 (another PCP gene) in ureteric tree growth, most marked in the caudal compartment of the kidneys from compound heterozygous mutant mice with a stunted rump. Furthermore, these genes together are required for the maturation of glomeruli. Interestingly, we demonstrated patients with CELSR1 mutations and spina bifida can have significant renal malformations. Thus, PCP genes are important in mammalian kidney development and have an unexpected role in rostrocaudal patterning during organogenesis.


Assuntos
Polaridade Celular/genética , Rim/embriologia , Proteínas do Tecido Nervoso/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Disrafismo Espinal/patologia , Animais , Humanos , Rim/patologia , Camundongos Endogâmicos C3H
20.
Hum Mutat ; 36(3): 342-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25546815

RESUMO

Several single-nucleotide variants (SNVs) in low-density lipoprotein receptor-related protein 6 (Lrp6) cause neural tube defects (NTDs) in mice. We therefore examined LRP6 in 192 unrelated infants from California with the NTD, spina bifida, and found four heterozygous missense SNVs, three of which were predicted to be deleterious, among NTD cases and not in 190 ethnically matched nonmalformed controls. Parents and siblings could not be tested because of the study design. Like Crooked tail and Ringleschwanz mouse variants, the p.Tyr544Cys Lrp6 protein failed to bind the chaperone protein mesoderm development and impaired Lrp6 subcellular localization to the plasma membrane of MDCK II cells. Only the p.Tyr544Cys Lrp6 variant downregulated canonical Wnt signaling in a TopFlash luciferase reporter in vitro assay. In contrast, three Lrp6 mutants (p.Ala3Val, p.Tyr544Cys, and p.Arg1574Leu) increased noncanonical Wnt/planar cell polarity (PCP) signaling in an Ap1-luciferase assay. Thus, LRP6 variants outside of YWTD repeats could potentially predispose embryos to NTDs, whereas Lrp6 modulation of Wnt/PCP signaling would be more essential than its canonical pathway role in neural tube closure.


Assuntos
Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Disrafismo Espinal/genética , Animais , Linhagem Celular , Humanos , Lactente , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Polimorfismo de Nucleotídeo Único , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA