Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Geophys Res Biogeosci ; 127(9): e2022JG007026, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36247363

RESUMO

Biodiversity monitoring is an almost inconceivable challenge at the scale of the entire Earth. The current (and soon to be flown) generation of spaceborne and airborne optical sensors (i.e., imaging spectrometers) can collect detailed information at unprecedented spatial, temporal, and spectral resolutions. These new data streams are preceded by a revolution in modeling and analytics that can utilize the richness of these datasets to measure a wide range of plant traits, community composition, and ecosystem functions. At the heart of this framework for monitoring plant biodiversity is the idea of remotely identifying species by making use of the 'spectral species' concept. In theory, the spectral species concept can be defined as a species characterized by a unique spectral signature and thus remotely detectable within pixel units of a spectral image. In reality, depending on spatial resolution, pixels may contain several species which renders species-specific assignment of spectral information more challenging. The aim of this paper is to review the spectral species concept and relate it to underlying ecological principles, while also discussing the complexities, challenges and opportunities to apply this concept given current and future scientific advances in remote sensing.

2.
Nat Ecol Evol ; 5(7): 896-906, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33986541

RESUMO

Monitoring global biodiversity from space through remotely sensing geospatial patterns has high potential to add to our knowledge acquired by field observation. Although a framework of essential biodiversity variables (EBVs) is emerging for monitoring biodiversity, its poor alignment with remote sensing products hinders interpolation between field observations. This study compiles a comprehensive, prioritized list of remote sensing biodiversity products that can further improve the monitoring of geospatial biodiversity patterns, enhancing the EBV framework and its applicability. The ecosystem structure and ecosystem function EBV classes, which capture the biological effects of disturbance as well as habitat structure, are shown by an expert review process to be the most relevant, feasible, accurate and mature for direct monitoring of biodiversity from satellites. Biodiversity products that require satellite remote sensing of a finer resolution that is still under development are given lower priority (for example, for the EBV class species traits). Some EBVs are not directly measurable by remote sensing from space, specifically the EBV class genetic composition. Linking remote sensing products to EBVs will accelerate product generation, improving reporting on the state of biodiversity from local to global scales.


Assuntos
Benchmarking , Ecossistema , Biodiversidade
6.
Spat Spatiotemporal Epidemiol ; 10: 75-84, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25113593

RESUMO

The transmission of dengue disease is influenced by complex interactions among vector, host and virus. Land use such as water bodies or certain agricultural practices have been identified as likely risk factors for dengue because of the provision of suitable habitats for the vector. Many studies have focused on the land use factors of dengue vector abundance in small areas but have not yet studied the relationship between land use factors and dengue cases for large regions. This study aims to clarify if land use factors other than human settlements, e.g. different types of agricultural land use, water bodies and forest are associated with reported dengue cases from 2008 to 2010 in the state of Selangor, Malaysia. From the correlative relationship, we aim to generate a prediction risk map. We used Boosted Regression Trees (BRT) to account for nonlinearities and interactions between the factors with high predictive accuracies. Our model with a cross-validated performance score (Area Under the Receiver Operator Characteristic Curve, ROC AUC) of 0.81 showed that the most important land use factors are human settlements (model importance of 39.2%), followed by water bodies (16.1%), mixed horticulture (8.7%), open land (7.5%) and neglected grassland (6.7%). A risk map after 100 model runs with a cross-validated ROC AUC mean of 0.81 (±0.001 s.d.) is presented. Our findings may be an important asset for improving surveillance and control interventions for dengue.


Assuntos
Dengue/epidemiologia , Modelos Estatísticos , Análise Espacial , Controle de Doenças Transmissíveis , Dengue/prevenção & controle , Humanos , Malásia/epidemiologia , Densidade Demográfica , Curva ROC
7.
Int J Environ Res Public Health ; 10(12): 6319-34, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24287855

RESUMO

The number of dengue cases has been increasing on a global level in recent years, and particularly so in Malaysia, yet little is known about the effects of weather for identifying the short-term risk of dengue for the population. The aim of this paper is to estimate the weather effects on dengue disease accounting for non-linear temporal effects in Selangor, Kuala Lumpur and Putrajaya, Malaysia, from 2008 to 2010. We selected the weather parameters with a Poisson generalized additive model, and then assessed the effects of minimum temperature, bi-weekly accumulated rainfall and wind speed on dengue cases using a distributed non-linear lag model while adjusting for trend, day-of-week and week of the year. We found that the relative risk of dengue cases is positively associated with increased minimum temperature at a cumulative percentage change of 11.92% (95% CI: 4.41-32.19), from 25.4 °C to 26.5 °C, with the highest effect delayed by 51 days. Increasing bi-weekly accumulated rainfall had a positively strong effect on dengue cases at a cumulative percentage change of 21.45% (95% CI: 8.96, 51.37), from 215 mm to 302 mm, with the highest effect delayed by 26-28 days. The wind speed is negatively associated with dengue cases. The estimated lagged effects can be adapted in the dengue early warning system to assist in vector control and prevention plan.


Assuntos
Vírus da Dengue/fisiologia , Dengue/epidemiologia , Tempo (Meteorologia) , Dengue/virologia , Humanos , Malásia , Dinâmica não Linear , Distribuição de Poisson , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA