Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 618(7963): 169-179, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225982

RESUMO

Target occupancy is often insufficient to elicit biological activity, particularly for RNA, compounded by the longstanding challenges surrounding the molecular recognition of RNA structures by small molecules. Here we studied molecular recognition patterns between a natural-product-inspired small-molecule collection and three-dimensionally folded RNA structures. Mapping these interaction landscapes across the human transcriptome defined structure-activity relationships. Although RNA-binding compounds that bind to functional sites were expected to elicit a biological response, most identified interactions were predicted to be biologically inert as they bind elsewhere. We reasoned that, for such cases, an alternative strategy to modulate RNA biology is to cleave the target through a ribonuclease-targeting chimera, where an RNA-binding molecule is appended to a heterocycle that binds to and locally activates RNase L1. Overlay of the substrate specificity for RNase L with the binding landscape of small molecules revealed many favourable candidate binders that might be bioactive when converted into degraders. We provide a proof of concept, designing selective degraders for the precursor to the disease-associated microRNA-155 (pre-miR-155), JUN mRNA and MYC mRNA. Thus, small-molecule RNA-targeted degradation can be leveraged to convert strong, yet inactive, binding interactions into potent and specific modulators of RNA function.


Assuntos
Endorribonucleases , MicroRNAs , RNA Mensageiro , Humanos , Genes jun/genética , Genes myc/genética , MicroRNAs/antagonistas & inibidores , MicroRNAs/química , MicroRNAs/genética , MicroRNAs/metabolismo , Conformação de Ácido Nucleico , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato , Endorribonucleases/química , Endorribonucleases/metabolismo , Transcriptoma
2.
ACS Chem Biol ; 17(1): 5-10, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34898169

RESUMO

Various studies have shown that selective molecular recognition of RNA targets by small molecules in cells, although challenging, is indeed possible. One facile strategy to enhance selectivity and potency is binding two or more sites within an RNA simultaneously with a single molecule. To simplify the identification of targets amenable to such a strategy, we informatically mined all human microRNA (miRNA) precursors to identify those with two proximal noncanonically paired sites. We selected oncogenic microRNA-27a (miR-27a) for further study as a lead molecule binds its Drosha site and a nearby internal loop, affording a homodimer that potently and specifically inhibits miR-27a processing in both breast cancer and prostate cancer cells. This reduction of mature miR-27a ameliorates an oncogenic cellular phenotype with nanomolar activity. Collectively, these studies demonstrate that synergistic bioinformatic and experimental approaches can define targets that may be more amenable to small molecule targeting than others.


Assuntos
Antineoplásicos/farmacologia , Biologia Computacional , MicroRNAs/antagonistas & inibidores , Antineoplásicos/química , Neoplasias da Mama , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Próstata
3.
Nat Chem ; 12(10): 952-961, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32839603

RESUMO

Vascular endothelial growth factor A (VEGFA) stimulates angiogenesis in human endothelial cells, and increasing its expression is a potential treatment for heart failure. Here, we report the design of a small molecule (TGP-377) that specifically and potently enhances VEGFA expression by the targeting of a non-coding microRNA that regulates its expression. A selection-based screen, named two-dimensional combinatorial screening, revealed preferences in small-molecule chemotypes that bind RNA and preferences in the RNA motifs that bind small molecules. The screening program increased the dataset of known RNA motif-small molecule binding partners by 20-fold. Analysis of this dataset against the RNA-mediated pathways that regulate VEGFA defined that the microRNA-377 precursor, which represses Vegfa messenger RNA translation, is druggable in a selective manner. We designed TGP-377 to potently and specifically upregulate VEGFA in human umbilical vein endothelial cells. These studies illustrate the power of two-dimensional combinatorial screening to define molecular recognition events between 'undruggable' biomolecules and small molecules, and the ability of sequence-based design to deliver efficacious structure-specific compounds.


Assuntos
Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , MicroRNAs/química , MicroRNAs/metabolismo , Dobramento de RNA , Bibliotecas de Moléculas Pequenas/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , MicroRNAs/genética , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Fator A de Crescimento do Endotélio Vascular/genética
4.
J Alzheimers Dis ; 72(2): 425-441, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31594232

RESUMO

Ubiquitin Specific Protease-13 (USP13) is a de-ubiquinating enzyme that regulates protein ubiquitination and clearance. The role of USP13 is largely unknown in neurodegeneration. In this study we aim to demonstrate whether tau accumulation and/or clearance depends on ubiquitination/de-ubiquitination via USP-13. We used transgenic animal models of human amyloid precursor protein (APP) or P301L tau mutations and genetically knocked-down USP13 expression via shRNA to determine USP13 effects on tau ubiquitination and levels. We found a two-fold increase of USP13 levels in postmortem Alzheimer's disease (AD) brains. USP13 knockdown significantly increased the activity of the 20S proteasome and reduced the levels of hyper-phosphorylated tau (p-tau) in primary cortical neurons. USP13 knockdown also reduced the levels of amyloid and increased p-tau ubiquitination and clearance in transgenic animal models that overexpress murine tau as a result of the expression of familial APP mutations (TgAPP) and the human mutant P301L tau (rTg4510), respectively. Clearance of p-tau appears to be mediated by autophagy in these animal models. Taken together, these data suggest that USP13 knockdown reduces p-tau accumulation via regulation of ubiquitination/de-ubiquitination and mediates its clearance via autophagy and/or the proteasome. These results suggest that USP13 inhibition may be a therapeutic strategy to reduce accumulation of plaques and toxic p-tau in AD and human tauopathies.


Assuntos
Doença de Alzheimer/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Química Encefálica/genética , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Placa Amiloide/patologia , Complexo de Endopeptidases do Proteassoma , RNA Interferente Pequeno , Proteases Específicas de Ubiquitina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA