Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Med Phys ; 51(7): 4793-4810, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38353632

RESUMO

BACKGROUND: Digital subtraction angiography (DSA) is a fluoroscopy method primarily used for the diagnosis of cardiovascular diseases (CVDs). Deep learning-based DSA (DDSA) is developed to extract DSA-like images directly from fluoroscopic images, which helps in saving dose while improving image quality. It can also be applied where C-arm or patient motion is present and conventional DSA cannot be applied. However, due to the lack of clinical training data and unavoidable artifacts in DSA targets, current DDSA models still cannot satisfactorily display specific structures, nor can they predict noise-free images. PURPOSE: In this study, we propose a strategy for producing abundant synthetic DSA image pairs in which synthetic DSA targets are free of typical artifacts and noise commonly found in conventional DSA targets for DDSA model training. METHODS: More than 7,000 forward-projected computed tomography (CT) images and more than 25,000 synthetic vascular projection images were employed to create contrast-enhanced fluoroscopic images and corresponding DSA images, which were utilized as DSA image pairs for training of the DDSA networks. The CT projection images and vascular projection images were generated from eight whole-body CT scans and 1,584 3D vascular skeletons, respectively. All vessel skeletons were generated with stochastic Lindenmayer systems. We trained DDSA models on this synthetic dataset and compared them to the trainings on a clinical DSA dataset, which contains nearly 4,000 fluoroscopic x-ray images obtained from different models of C-arms. RESULTS: We evaluated DDSA models on clinical fluoroscopic data of different anatomies, including the leg, abdomen, and heart. The results on leg data showed for different methods that training on synthetic data performed similarly and sometimes outperformed training on clinical data. The results on abdomen and cardiac data demonstrated that models trained on synthetic data were able to extract clearer DSA-like images than conventional DSA and models trained on clinical data. The models trained on synthetic data consistently outperformed their clinical data counterparts, achieving higher scores in the quantitative evaluation of peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) metrics for DDSA images, as well as accuracy, precision, and Dice scores for segmentation of the DDSA images. CONCLUSIONS: We proposed an approach to train DDSA networks with synthetic DSA image pairs and extract DSA-like images from contrast-enhanced x-ray images directly. This is a potential tool to aid in diagnosis.


Assuntos
Angiografia Digital , Aprendizado Profundo , Processamento de Imagem Assistida por Computador , Angiografia Digital/métodos , Processamento de Imagem Assistida por Computador/métodos , Humanos , Tomografia Computadorizada por Raios X
2.
Sci Rep ; 14(1): 9373, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653993

RESUMO

To facilitate a prospective estimation of the effective dose of an CT scan prior to the actual scanning in order to use sophisticated patient risk minimizing methods, a prospective spatial dose estimation and the known anatomical structures are required. To this end, a CT reconstruction method is required to reconstruct CT volumes from as few projections as possible, i.e. by using the topograms, with anatomical structures as correct as possible. In this work, an optimized CT reconstruction model based on a generative adversarial network (GAN) is proposed. The GAN is trained to reconstruct 3D volumes from an anterior-posterior and a lateral CT projection. To enhance anatomical structures, a pre-trained organ segmentation network and the 3D perceptual loss are applied during the training phase, so that the model can then generate both organ-enhanced CT volume and organ segmentation masks. The proposed method can reconstruct CT volumes with PSNR of 26.49, RMSE of 196.17, and SSIM of 0.64, compared to 26.21, 201.55 and 0.63 using the baseline method. In terms of the anatomical structure, the proposed method effectively enhances the organ shapes and boundaries and allows for a straight-forward identification of the relevant anatomical structures. We note that conventional reconstruction metrics fail to indicate the enhancement of anatomical structures. In addition to such metrics, the evaluation is expanded with assessing the organ segmentation performance. The average organ dice of the proposed method is 0.71 compared with 0.63 for the baseline model, indicating the enhancement of anatomical structures.


Assuntos
Tomografia Computadorizada por Raios X , Tomografia Computadorizada por Raios X/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Doses de Radiação , Imagens de Fantasmas , Algoritmos , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA