Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 9(29): eadg3724, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37478185

RESUMO

Ganymede is the only satellite in the solar system known to have an intrinsic magnetic field. Interactions between this field and the Jovian magnetosphere are expected to funnel most of the associated impinging charged particles, which radiolytically alter surface chemistry across the Jupiter system, to Ganymede's polar regions. Using observations obtained with JWST as part of the Early Release Science program exploring the Jupiter system, we report the discovery of hydrogen peroxide, a radiolysis product of water ice, specifically constrained to the high latitudes. This detection directly implies radiolytic modification of the polar caps by precipitation of Jovian charged particles along partially open field lines within Ganymede's magnetosphere. Stark contrasts between the spatial distribution of this polar hydrogen peroxide, those of Ganymede's other radiolytic oxidants, and that of hydrogen peroxide on neighboring Europa have important implications for understanding water-ice radiolysis throughout the solar system.

2.
Space Sci Rev ; 219(7): 53, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744214

RESUMO

ESA's Jupiter Icy Moons Explorer (JUICE) will provide a detailed investigation of the Jovian system in the 2030s, combining a suite of state-of-the-art instruments with an orbital tour tailored to maximise observing opportunities. We review the Jupiter science enabled by the JUICE mission, building on the legacy of discoveries from the Galileo, Cassini, and Juno missions, alongside ground- and space-based observatories. We focus on remote sensing of the climate, meteorology, and chemistry of the atmosphere and auroras from the cloud-forming weather layer, through the upper troposphere, into the stratosphere and ionosphere. The Jupiter orbital tour provides a wealth of opportunities for atmospheric and auroral science: global perspectives with its near-equatorial and inclined phases, sampling all phase angles from dayside to nightside, and investigating phenomena evolving on timescales from minutes to months. The remote sensing payload spans far-UV spectroscopy (50-210 nm), visible imaging (340-1080 nm), visible/near-infrared spectroscopy (0.49-5.56 µm), and sub-millimetre sounding (near 530-625 GHz and 1067-1275 GHz). This is coupled to radio, stellar, and solar occultation opportunities to explore the atmosphere at high vertical resolution; and radio and plasma wave measurements of electric discharges in the Jovian atmosphere and auroras. Cross-disciplinary scientific investigations enable JUICE to explore coupling processes in giant planet atmospheres, to show how the atmosphere is connected to (i) the deep circulation and composition of the hydrogen-dominated interior; and (ii) to the currents and charged particle environments of the external magnetosphere. JUICE will provide a comprehensive characterisation of the atmosphere and auroras of this archetypal giant planet.

3.
Science ; 347(6220): aaa0709, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25613896

RESUMO

Heat transport and ice sublimation in comets are interrelated processes reflecting properties acquired at the time of formation and during subsequent evolution. The Microwave Instrument on the Rosetta Orbiter (MIRO) acquired maps of the subsurface temperature of comet 67P/Churyumov-Gerasimenko, at 1.6 mm and 0.5 mm wavelengths, and spectra of water vapor. The total H2O production rate varied from 0.3 kg s(-1) in early June 2014 to 1.2 kg s(-1) in late August and showed periodic variations related to nucleus rotation and shape. Water outgassing was localized to the "neck" region of the comet. Subsurface temperatures showed seasonal and diurnal variations, which indicated that the submillimeter radiation originated at depths comparable to the diurnal thermal skin depth. A low thermal inertia (~10 to 50 J K(-1) m(-2) s(-0.5)), consistent with a thermally insulating powdered surface, is inferred.

4.
Philos Trans A Math Phys Eng Sci ; 364(1848): 3139-46; discussion 3146, 2006 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17015384

RESUMO

Narrow-band filter, high-spectral-resolution (0.2 cm(-1)) spectro-imaging infrared observations of Jupiter's auroral zones, acquired in October 1999 and October 2000 with the FTS/BEAR instrument at the Canada-France-Hawaii Telescope, have provided maps of the emission from the H2 S1(1) quadrupole line and several H3+ lines. H2 and H3+ emissions appear to be morphologically different, especially in the north, where the latter notably exhibits a 'hot spot' near lambdaIII = 150-170 degrees System III longitude. The spectra include a total of 14 H3+ lines, including two hot lines from the 3v2-v2 band, detected on Jupiter for the first time. They can be used to determine H3+ column densities, rotational (Trot) and vibrational (Tvib) temperatures. We find the mean Tvib of the v2 = 3 state to be lower (960 +/- 50 K) than the mean Trot in v2 = 2 (1170 +/- 75 K), indicating an underpopulation of the v2 = 3 level with respect to local thermodynamical equilibrium. Rotational temperatures and associated column densities are generally higher and lower, respectively, than inferred previously from v2 observations. These features can be explained by the combination of both a large positive temperature gradient in the sub-microbar auroral atmosphere and non-local thermal equilibrium effects affecting preferentially hot and combination bands. Spatial variations in line intensities are mostly owing to correlated variations in the H3+ column densities. The thermostatic role played by H3+ at ionospheric levels may provide an explanation. The exception is the northern 'hot spot', which exhibits a Tvib about 250 K higher than other regions.

5.
Science ; 311(5758): 186-7, 2006 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-16410513
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA