Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 364(3): 433-446, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29273587

RESUMO

Dexrazoxane (DEX), the only cardioprotectant approved against anthracycline cardiotoxicity, has been traditionally deemed to be a prodrug of the iron-chelating metabolite ADR-925. However, pharmacokinetic profile of both agents, particularly with respect to the cells and tissues essential for its action (cardiomyocytes/myocardium), remains poorly understood. The aim of this study is to characterize the conversion and disposition of DEX to ADR-925 in vitro (primary cardiomyocytes) and in vivo (rabbits) under conditions where DEX is clearly cardioprotective against anthracycline cardiotoxicity. Our results show that DEX is hydrolyzed to ADR-925 in cell media independently of the presence of cardiomyocytes or their lysate. Furthermore, ADR-925 directly penetrates into the cells with contribution of active transport, and detectable concentrations occur earlier than after DEX incubation. In rabbits, ADR-925 was detected rapidly in plasma after DEX administration to form sustained concentrations thereafter. ADR-925 was not markedly retained in the myocardium, and its relative exposure was 5.7-fold lower than for DEX. Unlike liver tissue, myocardium homogenates did not accelerate the conversion of DEX to ADR-925 in vitro, suggesting that myocardial concentrations in vivo may originate from its distribution from the central compartment. The pharmacokinetic parameters for both DEX and ADR-925 were determined by both noncompartmental analyses and population pharmacokinetics (including joint parent-metabolite model). Importantly, all determined parameters were closer to human than to rodent data. The present results open venues for the direct assessment of the cardioprotective effects of ADR-925 in vitro and in vivo to establish whether DEX is a drug or prodrug.


Assuntos
Cardiotônicos/farmacocinética , Dexrazoxano/farmacocinética , Etilenodiaminas/farmacocinética , Glicina/análogos & derivados , Miócitos Cardíacos/metabolismo , Animais , Cardiotônicos/sangue , Cardiotônicos/metabolismo , Cardiotônicos/farmacologia , Dexrazoxano/sangue , Dexrazoxano/metabolismo , Dexrazoxano/urina , Etilenodiaminas/metabolismo , Glicina/metabolismo , Glicina/farmacocinética , Coelhos , Ratos , Distribuição Tecidual
2.
Biofactors ; 42(2): 133-48, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26876101

RESUMO

Tn is a unique translational biomarker in cardiology whose potential has not been diminished in the new era of high sensitive assays. cTns can be valuable markers in cardiac diseases as well as in infectious diseases and respiratory diseases. Furthermore, the role of cTns is growing in the routine evaluation of cardioxicity and in determining the efficacy/safety ratio of novel cardioprotective strategies in clinical settings. cTns can detect myocardial injury not only in a wide spectrum of laboratory animals in experimental studies in vivo, but also in isolated heart models or cardiomyocytes in vitro. The crucial issue regarding the cross-species usage of cardiac troponin investigation remains the choice of cardiac troponin testing. This review summarizes the recent proteomic data on aminoacid sequences of cTnT and cTnI in various species, as well as selected analytical characteristics of human cardiac troponin high-sensitivity assays. Due to the highly phylogenetically conserved structure of troponins, the same bioindicator can be investigated using the same method in both clinical and experimental cardiology, thus contributing to a better understanding of the pathogenesis of cardiac diseases as well as to increased effectiveness of troponin use in clinical practice. Measuring cardiac troponins using commercially available human high-sensitivity cardiac troponin tests with convenient antibodies selected on the basis of adequate proteomic knowledge can solve many issues which would otherwise be difficult to address in clinical settings for various ethical and practical reasons. Our survey could help elaborate the practical guidelines for optimizing the choice of cTns assay in cardiology.


Assuntos
Biomarcadores/metabolismo , Cardiopatias/diagnóstico , Troponina I/isolamento & purificação , Troponina T/isolamento & purificação , Bioensaio/métodos , Cardiopatias/metabolismo , Cardiopatias/patologia , Humanos , Miocárdio/metabolismo , Miocárdio/patologia , Proteômica , Troponina I/metabolismo , Troponina T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA