Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mikrochim Acta ; 187(1): 69, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31853726

RESUMO

A glassy carbon electrode (GCE) was modified with a composite prepared from phytic acid, polypyrrole and a ZIF type metal-organic framework (PA/PPy)/ZIF-8@ZIF-67). The nanocomposite was prepared by in-situ chemical polymerization in the presence of ferric chloride and subsequently functionalized with PA to form PA/PPy/ZIF-8@ZIF-67. The materials were characterized by XRD, FT-IR, BET, XPS, SEM and TEM. The modified GCE was applied to individual and simultaneous detection of Pb(II) and Cu(II), with peak voltages of -0.6 and - 0.1 V, respectively (vs. SCE). The amount of PPy, the ZIF-8@ZIF-67 concentration, polymerization potential, polymerization time and pH value were optimized. Under optimized conditions, the calibration plots have two linear ranges. These are from 0.02 to 200 µM and from 200 to 600 µM for Pb(II), and from 0.2 to 200 µM and 200 to 600 µM for Cu(II). The detection limits are 2.9 nM and 14.8 nM, respectively. Simultaneous detection of Pb(II) and Cu(II) is also demonstrated. The good performance of the electrode is attributed to the large surface area of ZIF-8@ZIF-67, the good electrical conductivity of PPy, and the metal complexation power of PA. The modified GCE was successfully applied to the determination of Pb(II) and Cu(II) in real samples and gave satisfactory recoveries. Graphical abstractSchematic presentation of the construction process of PA/PPy/ZIF-8@ZIF-67/GCE sensor, and the mechanism of Pb(II) and Cu(II) at the prepared sensor.

2.
Adv Mater ; 35(25): e2300905, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37040668

RESUMO

The development of rechargeable zinc-air batteries is heavily dependent on bifunctional oxygen electrocatalysts to offer exceptional oxygen reduction/evolution reaction (ORR/OER) activities. However, the design of such electrocatalysts with high activity and durability is challenging. Herein, a strategy is proposed to create an electrocatalyst comprised of copper-cobalt diatomic sites on a highly porous nitrogen-doped carbon matrix (Cu-Co/NC) with abundantly accessible metal sites and optimal geometric and electronic structures. Experimental findings and theoretical calculations demonstrate that the synergistic effect of Cu-Co dual-metal sites with metal-N4 coordination induce asymmetric charge distributions with moderate adsorption/desorption behavior with oxygen intermediates. This electrocatalyst exhibits extraordinary bifunctional oxygen electrocatalytic activities in alkaline media, with a half-wave potential of 0.92 V for ORR and a low overpotential of 335 mV at 10 mA cm-2 for OER. In addition, it demonstrates exceptional ORR activity in acidic (0.85 V) and neutral (0.74 V) media. When applied to a zinc-air battery, it achieves extraordinary operational performance and outstanding durability (510 h), ranking it as one of the most efficient bifunctional electrocatalysts reported to date. This work demonstrates the importance of geometric and electronic engineering of isolated dual-metal sites for boosting bifunctional electrocatalytic activity in electrochemical energy devices.

3.
Adv Mater ; 35(9): e2209644, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36533780

RESUMO

Rechargeable zinc-air batteries typically require efficient, durable, and inexpensive bifunctional electrocatalysts to support oxygen reduction/evolution reactions (ORR/OER). However, sluggish kinetics and mass transportation challenges must be addressed if the performance of these catalysts is to be enhanced. Herein, a strategy to fabricate a catalyst comprising atomically dispersed iron atoms supported on a mesoporous nitrogen-doped carbon support (Fe SAs/NC) with accessible metal sites and optimized electronic metal-support interactions is developed. Both the experimental results and theoretical calculations reveal that the engineered electronic structures of the metal active sites can regulate the charge distribution of Fe centers to optimize the adsorption/desorption of oxygenated intermediates. The Fe SAs/NC containing Fe1 N4 O1 sites achieves remarkable ORR activity over the entire pH range, with half-wave potentials of 0.93, 0.83, and 0.75 V (vs reversible hydrogen electrode) in alkaline, acidic, and neutral electrolytes, respectively. In addition, it demonstrates a promising low overpotential of 320 mV at 10 mA cm-2 for OER in alkaline conditions. The zinc-air battery assembled with Fe SAs/NC exhibits superior performance than that of Pt/C+RuO2 counterpart in terms of peak power density, specific capacity, and cycling stability. These findings demonstrate the importance of the electronic structure engineering of metal sites in directing catalytic activity.

4.
ACS Appl Mater Interfaces ; 13(2): 2530-2537, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33412851

RESUMO

Single-atom catalysts (SACs) have great potential to revolutionize heterogeneous catalysis, enabling fast and direct construction of desired products. Given their notable promise, a general and scalable strategy to access these catalyst systems is highly desirable. Herein, we describe a straightforward and efficient thermal atomization strategy to create atomically dispersed palladium atoms anchored on a nitrogen-doped carbon shell over an SBA-15 support. Their presence was confirmed by spherical aberration correction electron microscopy and extended X-ray absorption fine structure measurement. The nitrogen-containing carbon shells provide atomic diffusion sites for anchoring palladium atoms emitted from palladium nanoparticles. This catalyst showed exceptional efficiency in selective hydrogenation of phenylacetylene and other types of alkynes. Importantly, it showed excellent stability, recyclability, and sintering-resistant ability. This approach can be scaled up with comparable catalytic activity. We anticipate that this work may lay the foundation for rapid access to high-quality SACs that are amenable to large-scale production for industrial applications.

5.
ACS Nano ; 15(6): 10175-10184, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34101427

RESUMO

Metal-support interactions are of great importance in determining the support-activity in heterogeneous catalysis. Here we report a low-temperature synthetic strategy to create atomically dispersed palladium atoms anchored on defective hexagonal boron nitride (h-BN) nanosheet. Density functional theory (DFT) calculations suggest that the nitrogen-containing B vacancy can provide stable anchoring sites for palladium atoms. The presence of single palladium atoms was confirmed by spherical aberration correction electron microscopy and extended X-ray absorption fine structure measurement. This catalyst showed exceptional efficiency in chemoselective hydrogenation of cinnamaldehyde, along with excellent recyclability, sintering-resistant ability, and scalability. We anticipate this synthetic approach for the synthesis of high-quality SACs based on h-BN support is amenable to large-scale production of bench-stable catalysts with maximum atom efficiency for industrial applications.

6.
ACS Appl Mater Interfaces ; 12(51): 57569-57577, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33296190

RESUMO

Single-atom catalysis represents a new frontier that integrates the merits of homogeneous and heterogeneous catalysis to afford exceptional atom efficiency, activity, and selectivity for a range of catalytic systems. Herein we describe a simple defect engineering strategy to construct an atomically dispersed palladium catalyst (Pdδ+, 0 < δ < 2) by anchoring the palladium atoms on oxygen vacancies created in CeO2 nanorods. This was confirmed by spherical aberration correction electron microscopy and extended X-ray absorption fine structure measurement. The as-prepared catalyst showed exceptional catalytic performance in the hydrogenation of styrene (99% conversion, TOF of 2410 h-1), cinnamaldehyde (99% conversion, 99% selectivity, TOF of 968 h-1), as well as oxidation of triethoxysilane (99% conversion, 79 selectivity, TOF of 10 000 h-1). This single-atom palladium catalyst can be reused at least five times with negligible activity decay. The palladium atoms retained their dispersion on the support at the atomic level after thermal stability testing in Ar at 773 K. Most importantly, this synthetic method can be scaled up while maintaining catalytic performance. We anticipate that this method will expedite access to single-atom catalysts with high activity and excellent resistance to sintering, significantly impacting the performance of this class of catalysts.

7.
ACS Appl Mater Interfaces ; 12(48): 54146-54154, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33211492

RESUMO

Heterogeneous catalysts with atomically precise metal sites have enabled unique insight into structure-property relationships in materials science. Herein, we report the construction and selective hydrogenation performance of a single-atom palladium catalyst by confining the palladium atoms into the six-fold N-coordinating cavities of graphitic carbon nitride (g-C3N4) through a facile spatial confinement-reduction approach under mild reducing conditions. Spherical aberration correction electron microscopy and extended X-ray absorption fine structure measurements confirm the presence of atomically dispersed palladium atoms stabilized by the g-C3N4 support. Its exceptional catalytic activity was demonstrated by the hydrogenation of styrene (98% conversion, 1.5 h) and furfural (conversion of 64% and selectivity of 99%, 4 h) and hydrodechlorination of 4-chlorophenol (99% conversion and 99% selectivity, 10 min). This palladium catalyst can be reused at least five times with negligible deterioration of its activity. Importantly, the palladium atoms retained their atomic dispersion following the thermal treatment. Moreover, this synthetic method can be scaled up while retaining similar catalytic activity. Fundamental insights are provided to elucidate how the material's structure significantly impacts the catalytic performance at the atomic scale.

8.
Biosens Bioelectron ; 118: 129-136, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30075383

RESUMO

A highly sensitive and selective molecular imprinting polymer (MIP) sensor was fabricated based on polypyrrole (PPy)/ZIF-67/Nafion hybrid modified glassy carbon electrode (GCE) for the determination of dopamine (DA). The ZIF-67 material was facilely prepared by using hydrothermal synthesis method; subsequently, the PPy/ZIF-67/Nafion hybrid was obtained through a one-pot synthesis method. The physical properties of the materials and the modified sensors were investigated by using X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Nitrogen adsorption-desorption isothermal (BET), X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM) and Atomic force microspectroscopy (AFM) apparatus. Cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscope (EIS) were used to evaluate the electrochemical performance of the sensors. The influence factors controlling the performance of the MIP sensor were studied and included scan rate, pH value and scan cycles. Under optimal conditions, DPV peak was linearly related to DA concentration over two concentration intervals (0.08-100 µM and 100-500 µM). The detection limit of PPy/ZIF-67-MIPs/Nafion/GCE sensor for DA was 0.0308 µM (S/N = 3) and sensitivity was equal to 1.656 µA µM cm-2. Furthermore, good reproducibility, long-term stability and favorable selectivity were obtained in the experiment. Moreover, the fabricated MIP sensor was successfully applied in the determination of DA concentrations in injection and human serum samples with satisfactory recoveries.


Assuntos
Técnicas Biossensoriais/métodos , Dopamina/análise , Dopamina/sangue , Estruturas Metalorgânicas/química , Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas , Eletrodos , Humanos , Limite de Detecção , Impressão Molecular , Polímeros/química , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA