Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
PLoS Pathog ; 17(4): e1009531, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33878120

RESUMO

Most individuals who consume foods contaminated with the bacterial pathogen Listeria monocytogenes (Lm) develop mild symptoms, while others are susceptible to life-threatening systemic infections (listeriosis). Although it is known that the risk of severe disease is increased in certain human populations, including the elderly, it remains unclear why others who consume contaminated food develop listeriosis. Here, we used a murine model to discover that pulmonary coinfections can impair the host's ability to adequately control and eradicate systemic Lm that cross from the intestines to the bloodstream. We found that the resistance of mice to oral Lm infection was dramatically reduced by coinfection with Streptococcus pneumoniae (Spn), a bacterium that colonizes the respiratory tract and can also cause severe infections in the elderly. Exposure to Spn or microbial products, including a recombinant Lm protein (L1S) and lipopolysaccharide (LPS), rendered otherwise resistant hosts susceptible to severe systemic Lm infection. In addition, we show that this increase in susceptibility was dependent on an increase in the production of interleukin-10 (IL-10) from Ncr1+ cells, including natural killer (NK) cells. Lastly, the ability of Ncr1+ cell derived IL-10 to increase disease susceptibility correlated with a dampening of both myeloid cell accumulation and myeloid cell phagocytic capacity in infected tissues. These data suggest that efforts to minimize inflammation in response to an insult at the respiratory mucosa render the host more susceptible to infections by Lm and possibly other pathogens that access the oral mucosa.


Assuntos
Listeria monocytogenes/imunologia , Listeriose/imunologia , Pneumonia/imunologia , Animais , Progressão da Doença , Suscetibilidade a Doenças , Feminino , Interleucina-10/metabolismo , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/fisiologia , Lipopolissacarídeos , Listeria monocytogenes/patogenicidade , Listeriose/complicações , Listeriose/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doenças da Boca/complicações , Doenças da Boca/imunologia , Doenças da Boca/microbiologia , Doenças da Boca/patologia , Pneumonia/complicações , Pneumonia/etiologia , Pneumonia/patologia
2.
Mol Ther ; 30(3): 1149-1162, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34793974

RESUMO

STAT3 signaling has been shown to regulate cellular function and cytokine production in the tumor microenvironment (TME). Within the head and neck squamous cell carcinoma (HNSCC) TME, we previously showed that therapeutic targeting of STAT3 in combination with radiation resulted in improved tumor growth delay. However, given the independent regulatory effects STAT3 has on anti-tumor immunity, we aimed to decipher the effects of individually targeting STAT3 in the cancer cell, regulatory T cells (Tregs), and natural killer (NK) cell compartments in driving tumor growth and resistance to therapy in HNSCCs. We utilized a CRISPR knockout system for genetic deletion of STAT3 within the cancer cell as well as two genetic knockout mouse models, FoxP3-Cre/STAT3 fl and NKp46-Cre/STAT3 fl, for Tregs and NK cell targeting, respectively. Our data revealed differences in development of resistance to treatment with STAT3 CRISPR knockout in the cancer cell, driven by differential recruitment of immune cells. Knockout of STAT3 in Tregs overcomes this resistance and results in Treg reprogramming and recruitment and activation of antigen-presenting cells. In contrast, knockout of STAT3 in the NK cell compartment results in NK cell inactivation and acceleration of tumor growth. These data underscore the complex interplay between the cancer cell and the immune TME and carry significant implications for drug targeting and design of combination approaches in HNSCCs.


Assuntos
Neoplasias de Cabeça e Pescoço , Fator de Transcrição STAT3/metabolismo , Animais , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/terapia , Camundongos , Camundongos Knockout , Fator de Transcrição STAT3/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Linfócitos T Reguladores , Microambiente Tumoral/genética
3.
Immunity ; 36(5): 807-20, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22542147

RESUMO

Toll-like receptor (TLR) stimulation activates macrophages to resist intracellular pathogens. Yet, the intracellular bacterium Listeria monocytogenes (Lm) causes lethal infections in spite of innate immune cell activation. Lm uses direct cell-cell spread to disseminate within its host. Here, we have shown that TLR-activated macrophages killed cell-free Lm but failed to prevent infection by spreading Lm. Instead, TLR signals increased the efficiency of Lm spread from "donor" to "recipient" macrophages. This enhancement required nitric oxide (NO) production by nitric oxide synthase-2 (NOS2). NO increased Lm escape from secondary vacuoles in recipient cells and delayed maturation of phagosomes containing membrane-like particles that mimic Lm-containing pseudopods. NO also promoted Lm spread during systemic in vivo infection, as shown by the fact that inhibition of NOS2 with 1400W reduced spread-dependent Lm burdens in mouse livers. These findings reveal a mechanism by which pathogens capable of cell-cell spread can avoid the consequences of innate immune cell activation by TLR stimuli.


Assuntos
Listeria monocytogenes/imunologia , Listeriose/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Óxido Nítrico/metabolismo , Receptores Toll-Like/metabolismo , Animais , Células Cultivadas , Imunidade Inata/imunologia , Listeria monocytogenes/metabolismo , Listeriose/metabolismo , Ativação de Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/imunologia , Óxido Nítrico Sintase Tipo II/imunologia , Óxido Nítrico Sintase Tipo II/metabolismo , Fagossomos/imunologia , Fagossomos/metabolismo , Receptores Toll-Like/imunologia
4.
PLoS Pathog ; 13(5): e1006388, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28542482

RESUMO

Interferons (IFNs) target macrophages to regulate inflammation and resistance to microbial infections. The type II IFN (IFNγ) acts on a cell surface receptor (IFNGR) to promote gene expression that enhance macrophage inflammatory and anti-microbial activity. Type I IFNs can dampen macrophage responsiveness to IFNγ and are associated with increased susceptibility to numerous bacterial infections. The precise mechanisms responsible for these effects remain unclear. Type I IFNs silence macrophage ifngr1 transcription and thus reduce cell surface expression of IFNGR1. To test how these events might impact macrophage activation and host resistance during bacterial infection, we developed transgenic mice that express a functional FLAG-tagged IFNGR1 (fGR1) driven by a macrophage-specific promoter. Macrophages from fGR1 mice expressed physiologic levels of cell surface IFNGR1 at steady state and responded equivalently to WT C57Bl/6 macrophages when treated with IFNγ alone. However, fGR1 macrophages retained cell surface IFNGR1 and showed enhanced responsiveness to IFNγ in the presence of type I IFNs. When fGR1 mice were infected with the bacterium Listeria monocytogenes their resistance was significantly increased, despite normal type I and II IFN production. Enhanced resistance was dependent on IFNγ and associated with increased macrophage activation and antimicrobial function. These results argue that down regulation of myeloid cell IFNGR1 is an important mechanism by which type I IFNs suppress inflammatory and anti-bacterial functions of macrophages.


Assuntos
Listeria monocytogenes/fisiologia , Listeriose/imunologia , Macrófagos/imunologia , Receptores de Interferon/genética , Animais , Regulação para Baixo , Feminino , Humanos , Interferon Tipo I/imunologia , Listeriose/genética , Listeriose/microbiologia , Ativação de Macrófagos , Masculino , Camundongos , Camundongos Knockout , Receptores de Interferon/imunologia , Receptor de Interferon gama
5.
PLoS Pathog ; 12(6): e1005708, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27295349

RESUMO

Natural killer (NK) cells produce interferon (IFN)-γ and thus have been suggested to promote type I immunity during bacterial infections. Yet, Listeria monocytogenes (Lm) and some other pathogens encode proteins that cause increased NK cell activation. Here, we show that stimulation of NK cell activation increases susceptibility during Lm infection despite and independent from robust NK cell production of IFNγ. The increased susceptibility correlated with IL-10 production by responding NK cells. NK cells produced IL-10 as their IFNγ production waned and the Lm virulence protein p60 promoted induction of IL-10 production by mouse and human NK cells. NK cells consequently exerted regulatory effects to suppress accumulation and activation of inflammatory myeloid cells. Our results reveal new dimensions of the role played by NK cells during Lm infection and demonstrate the ability of this bacterial pathogen to exploit the induction of regulatory NK cell activity to increase host susceptibility.


Assuntos
Interleucina-10/imunologia , Células Matadoras Naturais/imunologia , Listeriose/imunologia , Transferência Adotiva , Animais , Técnicas de Cocultura , Modelos Animais de Doenças , Suscetibilidade a Doenças/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Interleucina-10/biossíntese , Listeria monocytogenes/imunologia , Listeriose/metabolismo , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
6.
J Immunol ; 193(10): 4757-60, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25381356

RESUMO

Changes made in the 8th edition of the Guide for the Care and Use of Laboratory Animals included new recommendations for the amount of space for breeding female mice. Adopting the new recommendations required, in essence, the elimination of trio breeding practices for all institutions. Both public opinion and published data did not readily support the new recommendations. In response, the National Jewish Health Institutional Animal Care and Use Committee established a program to directly compare the effects of breeding format on mouse pup survival and growth. Our study showed an overall parity between trio and pairwise breeding formats on the survival and growth of the litters, suggesting that the housing recommendations for breeding female mice as stated in the current Guide for the Care and Use of Laboratory Animals should be reconsidered.


Assuntos
Cruzamento/métodos , Abrigo para Animais/ética , Animais , Autoimunidade , Peso Corporal , Cruzamento/legislação & jurisprudência , Feminino , Guias como Assunto , Abrigo para Animais/legislação & jurisprudência , Linfócitos/imunologia , Linfócitos/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Gravidez
7.
Trends Immunol ; 33(10): 488-95, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22677184

RESUMO

Listeria monocytogenes (Lm) is both a life-threatening pathogen of humans and a model organism that is widely used to dissect the mechanisms of innate and adaptive immune resistance to infection. Specific aspects of the immune response to systemic Lm infection can be protective, neutral, or in some cases deleterious. In this review, we seek to provide an overview of the early events during Lm infection that dictate or regulate host innate and adaptive immune responses. We highlight several recent developments that add to our understanding of the complex interplay between inflammatory responses, host susceptibility to infection, and the development of protective immunity.


Assuntos
Listeria monocytogenes/imunologia , Listeriose/imunologia , Imunidade Adaptativa , Animais , Células Dendríticas/imunologia , Humanos , Imunidade Inata , Células Matadoras Naturais/imunologia
8.
J Immunol ; 191(6): 3384-92, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23935197

RESUMO

The ability of type I IFNs to increase susceptibility to certain bacterial infections correlates with downregulation of myeloid cell surface IFNGR, the receptor for the type II IFN (IFN-γ), and reduced myeloid cell responsiveness to IFN-γ. In this study, we show that the rapid reductions in mouse and human myeloid cell surface IFNGR1 expression that occur in response to type I IFN treatment reflect a rapid silencing of new ifngr1 transcription by repressive transcriptional regulators. Treatment of macrophages with IFN-ß reduced cellular abundance of ifngr1 transcripts as rapidly and effectively as actinomycin D treatment. IFN-ß treatment also significantly reduced the amounts of activated RNA polymerase II (pol II) and acetylated histones H3 and H4 at the ifngr1 promoter and the activity of an IFNGR1-luc reporter construct in macrophages. The suppression of IFNGR1-luc activity required an intact early growth response factor (Egr) binding site in the proximal ifngr1 promoter. Three Egr proteins and two Egr/NGFI-A binding (Nab) proteins were found to be expressed in bone macrophages, but only Egr3 and Nab1 were recruited to the ifngr1 promoter upon IFN-ß stimulation. Knockdown of Nab1 in a macrophage cell line prevented downregulation of IFNGR1 and prevented the loss of acetylated histones from the ifngr1 promoter. These data suggest that type I IFN stimulation induces a rapid recruitment of a repressive Egr3/Nab1 complex that silences transcription from the ifngr1 promoter. This mechanism of gene silencing may contribute to the anti-inflammatory effects of type I IFNs.


Assuntos
Proteína 3 de Resposta de Crescimento Precoce/metabolismo , Inativação Gênica/fisiologia , Interferon Tipo I/metabolismo , Receptores de Interferon/metabolismo , Proteínas Repressoras/metabolismo , Animais , Western Blotting , Imunoprecipitação da Cromatina , Regulação para Baixo , Proteína 3 de Resposta de Crescimento Precoce/imunologia , Citometria de Fluxo , Humanos , Interferon Tipo I/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/imunologia , Células Mieloides/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Interferon/imunologia , Proteínas Repressoras/imunologia , Transcrição Gênica , Receptor de Interferon gama
9.
Clin Infect Dis ; 58(6): e115-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24336756

RESUMO

An acquired immune deficiency due to interferon gamma (IFN-γ) autoantibodies was diagnosed in a 78-year-old Japanese man with treatment-refractory disseminated nontuberculous mycobacterial infection. In addition to standard antimycobacterial therapy, he was successfully treated with rituximab to eliminate B cells and thereby the autoantibody. Subsequently, he obtained a sustained remission from infection.


Assuntos
Anticorpos Monoclonais Murinos/uso terapêutico , Autoanticorpos/imunologia , Fatores Imunológicos/uso terapêutico , Interferon gama/imunologia , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/imunologia , Idoso , Autoanticorpos/sangue , Humanos , Masculino , Rituximab
10.
Proc Natl Acad Sci U S A ; 108(28): 11578-83, 2011 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-21709234

RESUMO

The generation of reactive oxygen species (ROS) is inherent to immune responses. ROS are crucially involved in host defense against pathogens by promoting bacterial killing, but also as signaling agents coordinating the production of cytokines. Transient Receptor Potential Melastatin 2 (TRPM2) is a Ca(2+)-permeable channel gated via binding of ADP-ribose, a metabolite formed under conditions of cellular exposure to ROS. Here, we show that TRPM2-deficient mice are extremely susceptible to infection with Listeria monocytogenes (Lm), exhibiting an inefficient innate immune response. In a comparison with IFNγR-deficient mice, TRPM2(-/-) mice shared similar features of uncontrolled bacterial replication and reduced levels of inducible (i)NOS-expressing monocytes, but had intact IFNγ responsiveness. In contrast, we found that levels of cytokines IL-12 and IFNγ were diminished in TRPM2(-/-) mice following Lm infection, which correlated with their reduced innate activation. Moreover, TRPM2(-/-) mice displayed a higher degree of susceptibility than IL-12-unresponsive mice, and supplementation with recombinant IFNγ was sufficient to reverse the unrestrained bacterial growth and ultimately the lethal phenotype of Lm-infected TRPM2(-/-) mice. The severity of listeriosis we observed in TRPM2(-/-) mice has not been reported for any other ion channel. These findings establish an unsuspected role for ADP-ribose and ROS-mediated cation flux for innate immunity, opening up unique possibilities for immunomodulatory intervention through TRPM2.


Assuntos
Imunidade Inata/fisiologia , Listeria monocytogenes/imunologia , Canais de Cátion TRPM/imunologia , Adjuvantes Imunológicos/farmacologia , Animais , Citocinas/biossíntese , Feminino , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Interferon gama/farmacologia , Interleucina-12/deficiência , Interleucina-12/genética , Interleucina-12/imunologia , Subunidade beta 2 de Receptor de Interleucina-12/deficiência , Subunidade beta 2 de Receptor de Interleucina-12/genética , Subunidade beta 2 de Receptor de Interleucina-12/imunologia , Listeria monocytogenes/patogenicidade , Listeriose/imunologia , Listeriose/prevenção & controle , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Receptores de Interferon/deficiência , Receptores de Interferon/genética , Receptores de Interferon/imunologia , Proteínas Recombinantes , Canais de Cátion TRPM/deficiência , Canais de Cátion TRPM/genética , Receptor de Interferon gama
11.
PLoS Pathog ; 7(11): e1002368, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22072975

RESUMO

Listeria monocytogenes (Lm) infection induces rapid and robust activation of host natural killer (NK) cells. Here we define a region of the abundantly secreted Lm endopeptidase, p60, that potently but indirectly stimulates NK cell activation in vitro and in vivo. Lm expression of p60 resulted in increased IFNγ production by naïve NK cells co-cultured with treated dendritic cells (DCs). Moreover, recombinant p60 protein stimulated activation of naive NK cells when co-cultured with TLR or cytokine primed DCs in the absence of Lm. Intact p60 protein weakly digested bacterial peptidoglycan (PGN), but neither muropeptide recognition by RIP2 nor the catalytic activity of p60 was required for NK cell activation. Rather, the immune stimulating activity mapped to an N-terminal region of p60, termed L1S. Treatment of DCs with a recombinant L1S polypeptide stimulated them to activate naïve NK cells in a cell culture model. Further, L1S treatment activated NK cells in vivo and increased host resistance to infection with Francisella tularensis live vaccine strain (LVS). These studies demonstrate an immune stimulating function for a bacterial LysM domain-containing polypeptide and suggest that recombinant versions of L1S or other p60 derivatives can be used to promote NK cell activation in therapeutic contexts.


Assuntos
Proteínas de Bactérias/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Listeria monocytogenes/imunologia , Animais , Proteínas de Bactérias/biossíntese , Células Cultivadas , Células Dendríticas/imunologia , Francisella tularensis/imunologia , Interferon gama/biossíntese , Interleucina-18/biossíntese , Interleucina-18/genética , Listeriose/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Recombinantes
12.
J Immunol ; 187(5): 2595-601, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21813776

RESUMO

Cyclic-di-GMP and cyclic-di-AMP are second messengers produced by bacteria and influence bacterial cell survival, differentiation, colonization, biofilm formation, virulence, and bacteria-host interactions. In this study, we show that in both RAW264.7 macrophage cells and primary bone marrow-derived macrophages, the production of IFN-ß and IL-6, but not TNF, in response to cyclic-di-AMP and cyclic-di-GMP requires MPYS (also known as STING, MITA, and TMEM173). Furthermore, expression of MPYS was required for IFN response factor 3 but not NF-κB activation in response to these bacterial metabolites. We also confirm that MPYS is required for type I IFN production by cultured macrophages infected with the intracellular pathogens Listeria monocytogenes and Francisella tularensis. However, during systemic infection with either pathogen, MPYS deficiency did not impact bacterial burdens in infected spleens. Serum IFN-ß and IL-6 concentrations in the infected control and MPYS(-/-) mice were also similar at 24 h postinfection, suggesting that these pathogens stimulate MPYS-independent cytokine production during in vivo infection. Our findings indicate that bifurcating MPYS-dependent and -independent pathways mediate sensing of cytosolic bacterial infections.


Assuntos
AMP Cíclico/imunologia , GMP Cíclico/análogos & derivados , Fator Regulador 3 de Interferon/imunologia , Interferon Tipo I/imunologia , Macrófagos/imunologia , Proteínas de Membrana/imunologia , Animais , Infecções Bacterianas/imunologia , Infecções Bacterianas/metabolismo , Linhagem Celular , AMP Cíclico/metabolismo , GMP Cíclico/imunologia , GMP Cíclico/metabolismo , Citocinas/biossíntese , Citocinas/imunologia , Ensaio de Imunoadsorção Enzimática , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/biossíntese , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagócitos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
bioRxiv ; 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37163027

RESUMO

For many intracellular pathogens, their virulence depends on an ability to spread between cells of an epithelial layer. For intercellular spread to occur, these pathogens deform the plasma membrane into a protrusion structure that is engulfed by the neighboring cell. Although the polymerization of actin is essential for spread, how these pathogens manipulate the actin cytoskeleton in a manner that enables protrusion formation is still incompletely understood. Here, we identify the mammalian actin binding protein synaptopodin as required for efficient intercellular spread. Using a model cytosolic pathogen, Shigella flexneri , we show that synaptopodin contributes to organization of actin around bacteria and increases the length of the actin tail at the posterior pole of the bacteria. We show that synaptopodin presence enables protrusions to form and to resolve at a greater rate, indicating that greater stability of the actin tail enables the bacteria to push against the membrane with greater force. We demonstrate that synaptopodin recruitment around bacteria requires the bacterial protein IcsA, and we show that this recruitment is further enhanced in a type 3 secretion system dependent manner. These data establish synaptopodin as required for intracellular bacteria to reprogram the actin cytoskeleton in a manner that enables efficient protrusion formation and enhance our understanding of the cellular function of synaptopodin. Authors Summary: Intercellular spread is essential for many cytosolic dwelling pathogens during their infectious life cycle. Despite knowing the steps required for intercellular spread, relatively little is known about the host-pathogen interactions that enable these steps to occur. Here, we identify a requirement for the actin binding protein synaptopodin during intercellular spread by cytosolic bacteria. We show synaptopodin is necessary for the stability and recruitment of polymerized actin around bacteria. We also demonstrate synaptopodin is necessary to form plasma membrane structures known as protrusions that are necessary for the movement of these bacteria between cells. Thus, these findings implicate synaptopodin as an important actin-binding protein for the virulence of intracellular pathogens that require the actin cytoskeleton for their spread between cells.

14.
J Immunol ; 184(9): 5172-8, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20351186

RESUMO

The mechanisms for NK cell activation during infection by intracellular bacterial pathogens are not clearly defined. To dissect how Listeria monocytogenes infection elicits NK cell activation, we evaluated the requirements for activation of naive splenic NK cells by infected bone marrow-derived dendritic cells (BMDCs). We found that NK cell activation in this setting required infection of BMDCs by live wild type bacteria. NK cells were not activated when BMDCs were infected with a live hemolysin deficient (Deltahly) strain. Neutralization of IL-12, TNF-alpha, or caspase-1 each dramatically reduced NK cell IFN-gamma production in response to live wt L. monocytogenes infection. Addition of recombinant IL-18, but not IL-1beta, reversed the effects of caspase-1 inhibition. Recombinant IL-18 also restored NK cell activation by BMDCs infected with Deltahly L. monocytogenes, which produced IL-12 but not IL-18. IL-18 acted on NK cells because MyD88 expression was required in responding NK cells, but not infected BMDC. However, secreted cytokines were not sufficient for activation of naive NK cells by infected BMDCs. Rather, NK cell activation additionally required contact between infected BMDCs and NK cells. These data suggest that the activation of NK cells during L. monocytogenes infection requires both secreted cytokines and ligation of NK activating receptors during direct contact with infected DCs.


Assuntos
Comunicação Celular/imunologia , Células Dendríticas/imunologia , Interleucina-18/fisiologia , Células Matadoras Naturais/imunologia , Listeria monocytogenes/imunologia , Ativação Linfocitária/imunologia , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/microbiologia , Células Cultivadas , Técnicas de Cocultura , Células Dendríticas/microbiologia , Feminino , Interferon gama/biossíntese , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/microbiologia , Listeriose/imunologia , Listeriose/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/biossíntese , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/fisiologia
15.
Clin Cancer Res ; 28(5): 1013-1026, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34862244

RESUMO

PURPOSE: Metastasis remains a major hurdle in treating aggressive malignancies such as pancreatic ductal adenocarcinoma (PDAC). Improving response to treatment, therefore, requires a more detailed characterization of the cellular populations involved in controlling metastatic burden. EXPERIMENTAL DESIGN: PDAC patient tissue samples were subjected to RNA sequencing analysis to identify changes in immune infiltration following radiotherapy. Genetically engineered mouse strains in combination with orthotopic tumor models of PDAC were used to characterize disease progression. Flow cytometry was used to analyze tumor infiltrating, circulating, and nodal immune populations. RESULTS: We demonstrate that although radiotherapy increases the infiltration and activation of dendritic cells (DC), it also increases the infiltration of regulatory T cells (Treg) while failing to recruit natural killer (NK) and CD8 T cells in PDAC patient tissue samples. In murine orthotopic tumor models, we show that genetic and pharmacologic depletion of Tregs and NK cells enhances and attenuates response to radiotherapy, respectively. We further demonstrate that targeted inhibition of STAT3 on Tregs results in improved control of local and distant disease progression and enhanced NK-mediated immunosurveillance of metastasis. Moreover, combination treatment of STAT3 antisense oligonucleotide (ASO) and radiotherapy invigorated systemic immune activation and conferred a survival advantage in orthotopic and metastatic tumor models. Finally, we show the response to STAT3 ASO + radiotherapy treatment is dependent on NK and DC subsets. CONCLUSIONS: Our results suggest targeting Treg-mediated immunosuppression is a critical step in mediating a response to treatment, and identifying NK cells as not only a prognostic marker of improved survival, but also as an effector population that functions to combat metastasis.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma/terapia , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/terapia , Progressão da Doença , Humanos , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/terapia , Fator de Transcrição STAT3/genética , Linfócitos T Reguladores , Neoplasias Pancreáticas
16.
Clin Cancer Res ; 27(22): 6235-6249, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34518311

RESUMO

PURPOSE: Natural killer (NK) cells are type I innate lymphoid cells that are known for their role in killing virally infected cells or cancer cells through direct cytotoxicity. In addition to direct tumor cell killing, NK cells are known to play fundamental roles in the tumor microenvironment through secretion of key cytokines, such as FMS-like tyrosine kinase 3 ligand (FLT3L). Although radiotherapy is the mainstay treatment in most cancers, the role of radiotherapy on NK cells is not well characterized. EXPERIMENTAL DESIGN: This study combines radiation, immunotherapies, genetic mouse models, and antibody depletion experiments to identify the role of NK cells in overcoming resistance to radiotherapy in orthotopic models of head and neck squamous cell carcinoma. RESULTS: We have found that NK cells are a crucial component in the development of an antitumor response, as depleting them removes efficacy of the previously successful combination treatment of radiotherapy, anti-CD25, and anti-CD137. However, in the absence of NK cells, the effect can be rescued through treatment with FLT3L. But neither radiotherapy with FLT3L therapy alone nor radiotherapy with anti-NKG2A yields any meaningful tumor growth delay. We also identify a role for IL2 in activating NK cells to secrete FLT3L. This activity, we show, is mediated through CD122, the intermediate affinity IL2 receptor, and can be targeted with anti-CD25 therapy. CONCLUSIONS: These findings highlight the complexity of using radio-immunotherapies to activate NK cells within the tumor microenvironment, and the importance of NK cells in activating dendritic cells for increased tumor surveillance.


Assuntos
Neoplasias de Cabeça e Pescoço , Radioimunoterapia , Animais , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Imunidade Inata , Células Matadoras Naturais , Proteínas de Membrana , Camundongos , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Microambiente Tumoral
17.
Front Immunol ; 11: 105, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117259

RESUMO

Bacterial and viral pathogens are predominant causes of pulmonary infections and complications. Morbidity and mortality from these infections is increased in populations that include the elderly, infants, and individuals with genetic disorders such as Down syndrome. Immune senescence, concurrent infections, and other immune alterations occur in these susceptible populations, but the underlying mechanisms that dictate increased susceptibility to lung infections are not fully defined. Here, we review unique features of the lung as a mucosal epithelial tissue and aspects of inflammatory and immune responses in model pulmonary infections and co-infections by influenza virus and Streptococcus pneumoniae. In these models, lung inflammatory responses are a double-edged sword: recruitment of immune effectors is essential to eliminate bacteria and virus-infected cells, but inflammatory cytokines drive changes in the lung conducive to increased pathogen replication. Excessive accumulation of inflammatory cells also hinders lung function, possibly causing death of the host. Some animal studies have found that targeting host modulators of lung inflammatory responses has therapeutic or prophylactic effects in these infection and co-infection models. However, conflicting results from other studies suggest microbiota, sequence of colonization, or other unappreciated aspects of lung biology also play important roles in the outcome of infections. Regardless, a predisposition to excessive or aberrant inflammatory responses occurs in susceptible human populations. Hence, in appropriate contexts, modulation of inflammatory responses may prove effective for reducing the frequency or severity of pulmonary infections. However, there remain limitations in our understanding of how this might best be achieved-particularly in diverse human populations.


Assuntos
Coinfecção/imunologia , Interações Hospedeiro-Patógeno/imunologia , Vírus da Influenza A/imunologia , Influenza Humana/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções Pneumocócicas/imunologia , Pneumonia Pneumocócica/imunologia , Pneumonia Viral/imunologia , Streptococcus pneumoniae/imunologia , Idoso , Animais , Coinfecção/virologia , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças/imunologia , Humanos , Imunidade Inata , Lactente , Inflamação/imunologia , Influenza Humana/virologia , Infecções por Orthomyxoviridae/virologia , Infecções Pneumocócicas/microbiologia , Pneumonia Pneumocócica/microbiologia , Pneumonia Viral/virologia
18.
Curr Res Immunol ; 1: 1-9, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34337387

RESUMO

The type II interferon (IFNγ) promotes resistance to intracellular pathogens. Most immune and somatic cells also express the IFNγ receptor (IFNGR) and respond to IFNγ. While myeloid cell have been implicated as important targets of IFNγ, it remains unknown if IFNγ signaling to myeloid cell types suffices for resistance to infection. Here, we addressed this question by generating mice in which IFNGR1 is selectively expressed by myeloid cells. These "MSGR1" (myeloid selective IFNGR1) mice express an epitope-tagged Ifngr1 transgene (fGR1) from the myeloid-specific c-fms promoter in a background lacking endogenous Ifngr1. IFNGR staining was selectively observed on myeloid cells in the MSGR1 mice and correlated with responsiveness of these cells to IFNγ. During systemic infection by the bacterium Listeria monocytogenes, activation marker staining was comparable on monocytes from MSGR1 and control B6 mice. Bacterial burdens and survival were also equivalent in MSGR1 and wildtype B6 animals at a timepoint when B6.Ifngr1 -/- mice began to succumb. These data confirm that activation of inflammatory monocytes and neutrophils is a key mechanism by which IFNγ promotes innate anti-bacterial immunity and suggest that IFNγ targeting of myeloid cells is largely sufficient to mediate protection against systemic L. monocytogenes.

19.
Transl Res ; 226: 70-82, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32634590

RESUMO

Lung inflammation is tightly controlled to balance microbial clearance with the tissue damage that accompanies this response. Bacterial pathogens including Streptococcus pneumoniae (S. pneumoniae) modulate immune regulation by promoting secretion of the anti-inflammatory cytokine IL-10. The important cellular sources of IL-10 that impact protection against different bacterial infections are not well characterized. We find that S. pneumoniaeactivates IL-10 secretion from natural killer (NK) cells in the lung, which restrict host protection in a mouse model of sublethal infection. Direct transfer of wild-type NK cells into the lungs of IL-10-deficient mice drives bacterial expansion, identifying NK cells as a critical source of IL-10 promoting S. pneumoniae infection. The S. pneumoniae virulence protein Spr1875 was found to elicit NK cell IL-10 production in purified cells and in the lungs of live animals. These findings reveal therapeutic targets to combat bacterial-driven immune regulation in the lung.


Assuntos
Interleucina-10/biossíntese , Células Matadoras Naturais/metabolismo , Pneumopatias/imunologia , Infecções Estreptocócicas/imunologia , Streptococcus pneumoniae/patogenicidade , Animais , Vacinas Bacterianas/imunologia , Feminino , Imunidade Inata , Células Matadoras Naturais/imunologia , Pneumopatias/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infecções Estreptocócicas/microbiologia , Streptococcus pneumoniae/imunologia
20.
Front Immunol ; 11: 590266, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363536

RESUMO

Kinase activity plays an essential role in the regulation of immune cell defenses against pathogens. The protein kinase CK2 (formerly casein kinase II) is an evolutionarily conserved kinase with hundreds of identified substrates. CK2 is ubiquitously expressed in somatic and immune cells, but the roles of CK2 in regulation of immune cell function remain largely elusive. This reflects the essential role of CK2 in organismal development and limited prior work with conditional CK2 mutant murine models. Here, we generated mice with a conditional (floxed) allele of Csnk2a, which encodes the catalytic CK2α subunit of CK2. When crossed to Lyz2-cre mice, excision of Csnk2a sequence impaired CK2α expression in myeloid cells but failed to detectably alter myeloid cell development. By contrast, deficiency for CK2α increased inflammatory myeloid cell recruitment, activation, and resistance following systemic Listeria monocytogenes (Lm) infection. Results from mixed chimera experiments indicated that CK2α deficiency in only a subset of myeloid cells was not sufficient to reduce bacterial burdens. Nor did cell-intrinsic deficiency for CK2α suffice to alter accumulation or activation of monocytes and neutrophils in infected tissues. These data suggest that CK2α expression by Lyz2-expressing cells promotes inflammatory and anti-bacterial responses through effects in trans. Our results highlight previously undescribed suppressive effects of CK2 activity on inflammatory myeloid cell responses and illustrate that cell-extrinsic effects of CK2 can shape inflammatory and protective innate immune responses.


Assuntos
Caseína Quinase II/imunologia , Listeria monocytogenes , Listeriose/imunologia , Células Mieloides/imunologia , Animais , Caseína Quinase II/genética , Feminino , Inflamação/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA