Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 110(12): E1152-61, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23487772

RESUMO

Identifying the connectome of adult-generated neurons is essential for understanding how the preexisting circuitry is refined by neurogenesis. Changes in the pattern of connectivity are likely to control the differentiation process of newly generated neurons and exert an important influence on their unique capacity to contribute to information processing. Using a monosynaptic rabies virus-based tracing technique, we studied the evolving presynaptic connectivity of adult-generated neurons in the dentate gyrus (DG) of the hippocampus and olfactory bulb (OB) during the first weeks of their life. In both neurogenic zones, adult-generated neurons first receive local connections from multiple types of GABAergic interneurons before long-range projections become established, such as those originating from cortical areas. Interestingly, despite fundamental similarities in the overall pattern of evolution of presynaptic connectivity, there were notable differences with regard to the development of cortical projections: although DG granule neuron input originating from the entorhinal cortex could be traced starting only from 3 to 5 wk on, newly generated neurons in the OB received input from the anterior olfactory nucleus and piriform cortex already by the second week. This early glutamatergic input onto newly generated interneurons in the OB was matched in time by the equally early innervations of DG granule neurons by glutamatergic mossy cells. The development of connectivity revealed by our study may suggest common principles for incorporating newly generated neurons into a preexisting circuit.


Assuntos
Giro Denteado/fisiologia , Neurônios/metabolismo , Bulbo Olfatório/fisiologia , Sinapses/metabolismo , Animais , Giro Denteado/citologia , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Bulbo Olfatório/citologia , Vírus da Raiva
2.
Development ; 138(8): 1459-69, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21367818

RESUMO

Neurogenesis is widespread in the zebrafish adult brain through the maintenance of active germinal niches. To characterize which progenitor properties correlate with this extensive neurogenic potential, we set up a method that allows progenitor cell transduction and tracing in the adult zebrafish brain using GFP-encoding retro- and lentiviruses. The telencephalic germinal zone of the zebrafish comprises quiescent radial glial progenitors and actively dividing neuroblasts. Making use of the power of clonal viral vector-based analysis, we demonstrate that these progenitors follow different division modes and fates: neuroblasts primarily undergo a limited amplification phase followed by symmetric neurogenic divisions; by contrast, radial glia are capable at the single cell level of both self-renewing and generating different cell types, and hence exhibit bona fide neural stem cell (NSC) properties in vivo. We also show that radial glial cells predominantly undergo symmetric gliogenic divisions, which amplify this NSC pool and may account for its long-lasting maintenance. We further demonstrate that blocking Notch signaling results in a significant increase in proliferating cells and in the numbers of clones, but does not affect clone composition, demonstrating that Notch primarily controls proliferation rather than cell fate. Finally, through long-term tracing, we illustrate the functional integration of newborn neurons in forebrain adult circuitries. These results characterize fundamental aspects of adult progenitor cells and neurogenesis, and open the way to using virus-based technologies for stable genetic manipulations and clonal analyses in the zebrafish adult brain.


Assuntos
Divisão Celular/fisiologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Telencéfalo/citologia , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Divisão Celular/genética , Linhagem Celular , Eletrofisiologia , Citometria de Fluxo , Vetores Genéticos/genética , Humanos , Imuno-Histoquímica , Lentivirus/genética , Retroviridae/genética , Células-Tronco/citologia , Telencéfalo/metabolismo , Transdução Genética , Peixe-Zebra
3.
J Neurosci ; 31(35): 12471-82, 2011 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-21880909

RESUMO

It is generally suggested that astrocytes play important restorative functions after brain injury, yet little is known regarding their recruitment to sites of injury, despite numerous in vitro experiments investigating astrocyte polarity. Here, we genetically manipulated one of the proposed key signals, the small RhoGTPase Cdc42, selectively in mouse astrocytes in vitro and in vivo. We used an in vitro scratch assay as a minimal wounding model and found that astrocytes lacking Cdc42 (Cdc42Δ) were still able to form protrusions, although in a nonoriented way. Consequently, they failed to migrate in a directed manner toward the scratch. When animals were injured in vivo through a stab wound, Cdc42Δ astrocytes developed protrusions properly oriented toward the lesion, but the number of astrocytes recruited to the lesion site was significantly reduced. Surprisingly, however, lesions in Cdc42Δ animals, harboring fewer astrocytes contained significantly higher numbers of microglial cells than controls. These data suggest that impaired recruitment of astrocytes to sites of injury has a profound and unexpected effect on microglia recruitment.


Assuntos
Astrócitos/fisiologia , Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Movimento Celular/fisiologia , Córtex Cerebral/lesões , Proteína cdc42 de Ligação ao GTP/deficiência , Animais , Animais Recém-Nascidos , Movimento Celular/genética , Polaridade Celular/genética , Córtex Cerebral/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Marcação In Situ das Extremidades Cortadas/métodos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Fatores de Tempo , Proteína cdc42 de Ligação ao GTP/genética
4.
Cereb Cortex ; 21(2): 413-24, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20562320

RESUMO

In the subependymal zone and the dentate gyrus of the adult brain of rodents, neural stem cells with glial properties generate new neurons in a life-long process. The identification of glial progenitors outside the neurogenic niches, oligodendrocyte precursors in the healthy brain, and reactive astrocytes after cortical injury led to the idea of using these cells as endogenous cell source for neural repair in the cerebral cortex. Recently, our group showed that proliferating astroglia from the cerebral cortex can be reprogrammed into neurons capable of action potential firing by forced expression of neurogenic fate determinants but failed to develop synapses. Here, we describe a maturation profile of cultured reprogrammed NG2+ and glial fibrillary acidic protein+ glia cells of the postnatal rat cortex that ends with the establishment of a glutamatergic neuronal network. Within 3 weeks after viral expression of the transcription factor neurogenin 2 (Ngn2), glia-derived neurons exhibit network-driven, glutamate receptor-dependent oscillations in Ca(2+) and exhibit functional pre- and postsynaptic specialization. Interestingly, the Ngn2-instructed glutamatergic network also supports the maturation of a γ-aminobutyric acid (GABA)ergic input via GABA(A) receptors in a non-cell autonomous manner. The "proof-of-principle" results imply that a single transcription factor may be sufficient to instruct a neuronal network from a glia-like cell source.


Assuntos
Diferenciação Celular/fisiologia , Córtex Cerebral/citologia , Córtex Cerebral/crescimento & desenvolvimento , Rede Nervosa/fisiologia , Neuroglia/fisiologia , Neurônios/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Bicuculina/farmacologia , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Proteínas do Domínio Duplacortina , Agonistas de Receptores de GABA-A/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Muscimol/farmacologia , Rede Nervosa/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neuropeptídeos/metabolismo , Técnicas de Patch-Clamp , Ratos , Receptores de GABA-A/metabolismo , Retroviridae/genética , Bloqueadores dos Canais de Sódio/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Tetrodotoxina/farmacologia , Transdução Genética/métodos , Tubulina (Proteína)/metabolismo
5.
Proc Natl Acad Sci U S A ; 105(9): 3581-6, 2008 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-18299565

RESUMO

Reactive gliosis is the universal reaction to brain injury, but the precise origin and subsequent fate of the glial cells reacting to injury are unknown. Astrocytes react to injury by hypertrophy and up-regulation of the glial-fibrillary acidic protein (GFAP). Whereas mature astrocytes do not normally divide, a subpopulation of the reactive GFAP(+) cells does so, prompting the question of whether the proliferating GFAP(+) cells arise from endogenous glial progenitors or from mature astrocytes that start to proliferate in response to brain injury. Here we show by genetic fate mapping and cell type-specific viral targeting that quiescent astrocytes start to proliferate after stab wound injury and contribute to the reactive gliosis and proliferating GFAP(+) cells. These proliferating astrocytes remain within their lineage in vivo, while a more favorable environment in vitro revealed their multipotency and capacity for self-renewal. Conversely, progenitors present in the adult mouse cerebral cortex labeled by NG2 or the receptor for the platelet-derived growth factor (PDGFRalpha) did not form neurospheres after (or before) brain injury. Taken together, the first fate-mapping analysis of astrocytes in the adult mouse cerebral cortex shows that some astrocytes acquire stem cell properties after injury and hence may provide a promising cell type to initiate repair after brain injury.


Assuntos
Astrócitos/fisiologia , Lesões Encefálicas/patologia , Gliose/patologia , Células-Tronco Pluripotentes/citologia , Animais , Astrócitos/citologia , Linhagem da Célula , Células Cultivadas , Córtex Cerebral , Proteína Glial Fibrilar Ácida , Camundongos , Camundongos Endogâmicos , Ferimentos Perfurantes
6.
Traffic ; 9(9): 1530-50, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18627576

RESUMO

p23 (Tmp21 or p24delta), a member of the p24 family, is important for maintaining the integrity of the secretory pathway in mammals. It is a type I protein with a receptor-like luminal domain and a short cytoplasmic tail. This cytoplasmic tail carries an atypical endoplasmic reticulum (ER) retention KKXX motif that binds to coat protein I. The trafficking of p23 has been thought to be restricted to the early secretory pathway. However, recent findings as well as this study demonstrate that p23 is also found in the plasma membrane. By tagging different domains of p23 with green fluorescent protein, it is shown that it is the luminal domain that is primarily responsible for the appearance of p23 in the plasma membrane, despite the presence of a functional KKXX-ER retention and retrieval motif. When the KKXX motif is abolished, p23 shows an extremely increased trafficking to the plasma membrane. These experiments reveal the presence of two fractions of p23 with distinct trafficking destinations. One fraction cycles through the ER-Golgi pathway using its functional KKXX retrieval motif. The transient appearance of p23 in the plasma membrane is supported by the luminal domain. These results help to explain the functional presence of p23 in plasma membrane protein complexes and post-Golgi compartments.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Via Secretória , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas de Transporte Nucleocitoplasmático , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo
7.
Nature ; 426(6962): 74-8, 2003 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-14603320

RESUMO

The neurotrophin receptor TrkB is essential for normal function of the mammalian brain. It is expressed in three splice variants. Full-length receptors (TrkB(FL)) possess an intracellular tyrosine kinase domain and are considered as those TrkB receptors that mediate the crucial effects of brain-derived neurotrophic factor (BDNF) or neurotrophin 4/5 (NT-4/5). By contrast, truncated receptors (TrkB-T1 and TrkB-T2) lack tyrosine kinase activity and have not been reported to elicit rapid intracellular signalling. Here we show that astrocytes predominately express TrkB-T1 and respond to brief application of BDNF by releasing calcium from intracellular stores. The calcium transients are insensitive to the tyrosine kinase blocker K-252a and persist in mutant mice lacking TrkB(FL). By contrast, neurons produce rapid BDNF-evoked signals through TrkB(FL) and the Na(v)1.9 channel. Expression of antisense TrkB messenger RNA strongly reduces BDNF-evoked calcium signals in glia. Thus, our results show that, unexpectedly, TrkB-T1 has a direct signalling role in mediating inositol-1,4,5-trisphosphate-dependent calcium release; in addition, they identify a previously unknown mechanism of neurotrophin action in the brain.


Assuntos
Processamento Alternativo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Receptor trkB/química , Receptor trkB/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Cálcio/metabolismo , Eletrofisiologia , Neuroglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor trkB/genética , Deleção de Sequência
8.
Cell Calcium ; 44(4): 386-99, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19230142

RESUMO

For the analysis of Ca(2+)-dependent signaling, acetoxymethyl (AM)-derivatized ion indicators have become a popular tool. These indicators permeate membranes in an ion-insensitive form but, within cells, esterases hydrolyze these compounds to release ion-sensitive dyes. However, the properties of these indicators Limit their targeting to subcellular structures such as the endoplasmic reticulum, the dominant intracellular Ca2+ store. This study presents a novel approach for trapping fluorescent Ca2+ indicators in the ER. The method combines the selectivity of protein targeting with the biochemical advantages of synthetic Ca2+ indicators and allows direct, non-disruptive measurements of Ca(2+)-store dynamics with a high structural and temporal resolution. A recombinant carboxylesterase was targeted to the ER, providing a local esterase activity. After esterase-based dye loading, this additional esterase activity allowed improved trapping of Ca(2+)-sensitive forms of low-affinity Ca2+ indicators (e.g. Fluo5N) within the ER. The utility of the method was confirmed using different cell systems (293T, BHK21, cortical neurons) and activating different signaling pathways. In neurons, this approach enabled the detection of ER Ca2+ release with high resolution. In addition, the method allowed rapid confocal imaging of Ca2+ release from the ER, after activation of metabotropic glutamate receptors, in the presence of extracellular Ca2+.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Retículo Endoplasmático/metabolismo , Corantes Fluorescentes/metabolismo , Animais , Bioensaio , Cálcio/análise , Hidrolases de Éster Carboxílico/genética , Linhagem Celular , Células Cultivadas , Humanos , Indicadores e Reagentes/metabolismo , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Ratos , Ratos Wistar
9.
Stem Cell Reports ; 2(2): 153-62, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-24527389

RESUMO

We describe the labeling of adult neural stem cells (aNSCs) in the mouse and human dentate gyrus (DG) by the combinatorial expression of glial fibrillary acidic protein (GFAP) and Prominin1, as revealed by immunohistochemistry. Split-Cre-based genetic fate mapping of these double-positive cells in the adult murine DG reveals their NSC identity, as they are self-renewing and contribute to neurogenesis over several months. Their progeny reacts to stimuli such as voluntary exercise with increased neurogenesis. Prominin1+/GFAP+ cells also exist in the adult human DG, the only region in the human brain for which adult neurogenesis has been consistently reported. Our data, together with previous evidence of such double-positive NSCs in the developing murine brain and in neurogenic regions of vertebrates with widespread neurogenesis, suggest that Prominin1- and GFAP-expressing cells are NSCs in a wide range of species in development and adulthood.


Assuntos
Células-Tronco Adultas/metabolismo , Giro Denteado/citologia , Giro Denteado/metabolismo , Marcação de Genes , Recombinação Homóloga , Células-Tronco Neurais/metabolismo , Antígeno AC133 , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Expressão Gênica , Genes Reporter , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Hipocampo/metabolismo , Humanos , Camundongos , Neuroglia/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Transporte Proteico
10.
Stem Cell Reports ; 3(6): 1000-14, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25458895

RESUMO

The adult cerebral cortex lacks the capacity to replace degenerated neurons following traumatic injury. Conversion of nonneuronal cells into induced neurons has been proposed as an innovative strategy toward brain repair. Here, we show that retrovirus-mediated expression of the transcription factors Sox2 and Ascl1, but strikingly also Sox2 alone, can induce the conversion of genetically fate-mapped NG2 glia into induced doublecortin (DCX)(+) neurons in the adult mouse cerebral cortex following stab wound injury in vivo. In contrast, lentiviral expression of Sox2 in the unlesioned cortex failed to convert oligodendroglial and astroglial cells into DCX(+) cells. Neurons induced following injury mature morphologically and some acquire NeuN while losing DCX. Patch-clamp recording of slices containing Sox2- and/or Ascl1-transduced cells revealed that a substantial fraction of these cells receive synaptic inputs from neurons neighboring the injury site. Thus, NG2 glia represent a potential target for reprogramming strategies toward cortical repair.


Assuntos
Transdiferenciação Celular/genética , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Fatores de Transcrição SOXB1/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proliferação de Células , Reprogramação Celular/genética , Córtex Cerebral/lesões , Proteína Duplacortina , Expressão Gênica , Camundongos , Fatores de Transcrição SOXB1/metabolismo , Potenciais Sinápticos/genética
11.
PLoS One ; 7(2): e31547, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22348101

RESUMO

We have previously shown that transplantation of immature DCX+/NeuN+/Prox1+ neurons (found in the neonatal DG), but not undifferentiated neuronal progenitor cells (NPCs) from ventral subventricular zone (SVZ), results in neuronal maturation in vivo within the dentate niche. Here we investigated whether we could enhance the integration of SVZ NPCs by forced expression of the proneural gene Neurogenin 2 (NEUROG2). NPCs cultured from neonatal GFP-transgenic rat SVZ for 7 days in a non-differentiating medium were transduced with a retrovirus encoding NEUROG2 and DsRed or the DsRed reporter gene alone (control). By 3 days post-transduction, the NEUROG2-transduced cells maintained in culture contained mostly immature neurons (91% DCX+; 76% NeuN+), whereas the control virus-transduced cells remained largely undifferentiated (30% DCX+; <1% NeuN+). At 6 weeks following transplantation into the DG of adult male rats, there were no neurons among the transplanted cells treated with the control virus but the majority of the NEUROG2-transduced DsRed+ SVZ cells became mature neurons (92% NeuN+; DCX-negative). Although the NEUROG2-transduced SVZ cells did not express the dentate granule neuron marker Prox1, most of the NEUROG2-transduced SVZ cells (78%) expressed the glutamatergic marker Tbr1, suggesting the acquisition of a glutamatergic phenotype. Moreover, some neurons extended dendrites into the molecular layer, grew axons containing Ankyrin G+ axonal initial segments, and projected into the CA3 region, thus resembling mature DG granule neurons. A proportion of NEUROG2 transduced cells also expressed c-Fos and P-CREB, two markers of neuronal activation. We conclude that NEUROG2-transduction is sufficient to promote neuronal maturation and integration of transplanted NPCs from SVZ into the DG.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Giro Denteado/citologia , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Células-Tronco/citologia , Transdução Genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Diferenciação Celular , Células Cultivadas , Proteína Duplacortina , Ácido Glutâmico , Masculino , Proteínas do Tecido Nervoso/biossíntese , Neurogênese , Ratos , Células-Tronco/metabolismo
12.
Nat Protoc ; 6(2): 214-28, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21293461

RESUMO

Instructing glial cells to generate neurons may prove to be a strategy to replace neurons that have degenerated. Here, we describe a robust protocol for the efficient in vitro conversion of postnatal astroglia from the mouse cerebral cortex into functional, synapse-forming neurons. This protocol involves two steps: (i) expansion of astroglial cells (7 d) and (ii) astroglia-to-neuron conversion induced by persistent and strong retroviral expression of Neurog2 (encoding neurogenin-2) or Mash1 (also referred to as achaete-scute complex homolog 1 or Ascl1) and/or distal-less homeobox 2 (Dlx2) for generation of glutamatergic or GABAergic neurons, respectively (7-21 d for different degrees of maturity). Our protocol of astroglia-to-neuron conversion by a single neurogenic transcription factor provides a stringent experimental system to study the specification of a selective neuronal subtype, thus offering an alternative to the use of embryonic or neural stem cells. Moreover, it can be a useful model for studies of lineage conversion from non-neuronal cells, with potential for brain regenerative medicine.


Assuntos
Astrócitos/citologia , Diferenciação Celular , Córtex Cerebral/citologia , Neurônios/citologia , Animais , Astrócitos/virologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Técnicas de Cultura de Células , Linhagem da Célula , Meios de Cultura , Eletrofisiologia , Técnicas de Transferência de Genes , Engenharia Genética/métodos , Vetores Genéticos/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Técnicas de Patch-Clamp , Medicina Regenerativa/métodos , Retroviridae/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Neuron ; 68(4): 682-94, 2010 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21092858

RESUMO

Most neurons in the adult mammalian brain survive for the entire life of an individual. However, it is not known which transcriptional pathways regulate this survival in a healthy brain. Here, we identify a pathway regulating neuronal survival in a highly subtype-specific manner. We show that the transcription factor Pax6 expressed in dopaminergic neurons of the olfactory bulb regulates the survival of these neurons by directly controlling the expression of crystallin αA (CryαA), which blocks apoptosis by inhibition of procaspase-3 activation. Re-expression of CryαA fully rescues survival of Pax6-deficient dopaminergic interneurons in vivo and knockdown of CryαA by shRNA in wild-type mice reduces the number of dopaminergic OB interneurons. Strikingly, Pax6 utilizes different DNA-binding domains for its well-known role in fate specification and this role of regulating the survival of specific neuronal subtypes in the mature, healthy brain.


Assuntos
Cristalinas/fisiologia , Dopamina/fisiologia , Proteínas do Olho/fisiologia , Proteínas de Homeodomínio/fisiologia , Neurônios/fisiologia , Bulbo Olfatório/fisiologia , Fatores de Transcrição Box Pareados/fisiologia , Proteínas Repressoras/fisiologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Cristalinas/genética , Proteínas do Olho/genética , Proteínas de Homeodomínio/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/citologia , Neurônios/metabolismo , Bulbo Olfatório/citologia , Bulbo Olfatório/metabolismo , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/genética , Proteínas Repressoras/genética
14.
Cell Stem Cell ; 7(6): 744-58, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-21112568

RESUMO

Until now, limitations in the ability to enrich adult NSCs (aNSCs) have hampered meaningful analysis of these cells at the transcriptome level. Here we show via a split-Cre technology that coincident activity of the hGFAP and prominin1 promoters is a hallmark of aNSCs in vivo. Sorting of cells from the adult mouse subependymal zone (SEZ) based on their expression of GFAP and prominin1 isolates all self-renewing, multipotent stem cells at high purity. Comparison of the transcriptome of these purified aNSCs to parenchymal nonneurogenic astrocytes and other SEZ cells reveals aNSC hallmarks, including neuronal lineage priming and the importance of cilia- and Ca-dependent signaling pathways. Inducible deletion of the ciliary protein IFT88 in aNSCs validates the role of ciliary function in aNSCs. Our work reveals candidate molecular regulators for unique features of aNSCs and facilitates future selective analysis of aNSCs in other functional contexts, such as aging and injury.


Assuntos
Células-Tronco Adultas/citologia , Células-Tronco Neurais/citologia , Células-Tronco Adultas/metabolismo , Animais , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
15.
Nat Neurosci ; 12(12): 1524-33, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19881504

RESUMO

The adult mouse subependymal zone (SEZ) harbors neural stem cells that are thought to exclusively generate GABAergic interneurons of the olfactory bulb. We examined the adult generation of glutamatergic juxtaglomerular neurons, which had dendritic arborizations that projected into adjacent glomeruli, identifying them as short-axon cells. Fate mapping revealed that these originate from Neurog2- and Tbr2-expressing progenitors located in the dorsal region of the SEZ. Examination of the progenitors of these glutamatergic interneurons allowed us to determine the sequential expression of transcription factors in these cells that are thought to be hallmarks of glutamatergic neurogenesis in the developing cerebral cortex and adult hippocampus. Indeed, the molecular specification of these SEZ progenitors allowed for their recruitment into the cerebral cortex after a lesion was induced. Taken together, our data indicate that SEZ progenitors not only produce a population of adult-born glutamatergic juxtaglomerular neurons, but may also provide a previously unknown source of progenitors for endogenous repair.


Assuntos
Células-Tronco Adultas/citologia , Ácido Glutâmico/fisiologia , Interneurônios/citologia , Bulbo Olfatório/citologia , Bulbo Olfatório/fisiologia , Células-Tronco Adultas/fisiologia , Fatores Etários , Animais , Axônios/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biomarcadores/metabolismo , Encefalopatias/patologia , Encefalopatias/fisiopatologia , Linhagem da Célula/fisiologia , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Dendritos/fisiologia , Epêndima/citologia , Proteínas de Fluorescência Verde/genética , Hipocampo/citologia , Hipocampo/fisiologia , Interneurônios/fisiologia , Interneurônios/ultraestrutura , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Proteínas com Domínio T/metabolismo , Ácido gama-Aminobutírico/fisiologia
16.
Development ; 135(1): 11-22, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18032449

RESUMO

The size of brain regions depends on the balance between proliferation and differentiation. During development of the mouse cerebral cortex, ventricular zone (VZ) progenitors, neuroepithelial and radial glial cells, enlarge the progenitor pool by proliferative divisions, while basal progenitors located in the subventricular zone (SVZ) mostly divide in a differentiative mode generating two neurons. These differences correlate to the existence of an apico-basal polarity in VZ, but not SVZ, progenitors. Only VZ progenitors possess an apical membrane domain at which proteins of the Par complex are strongly enriched. We describe a prominent decrease in the amount of Par-complex proteins at the apical surface during cortical development and examine the role of these proteins by gain- and loss-of-function experiments. Par3 (Pard3) loss-of-function led to premature cell cycle exit, reflected in reduced clone size in vitro and the restriction of the progeny to the lower cortical layers in vivo. By contrast, Par3 or Par6 (Pard6alpha) overexpression promoted the generation of Pax6+ self-renewing progenitors in vitro and in vivo and increased the clonal progeny of single progenitors in vitro. Time-lapse video microscopy revealed that a change in the mode of cell division, rather than an alteration of the cell cycle length, causes the Par-complex-mediated increase in progenitors. Taken together, our data demonstrate a key role for the apically located Par-complex proteins in promoting self-renewing progenitor cell divisions at the expense of neurogenic differentiation in the developing cerebral cortex.


Assuntos
Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Proteínas de Ciclo Celular , Divisão Celular , Linhagem da Célula , Proliferação de Células , Córtex Cerebral/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Ligação Proteica , Interferência de RNA , Fatores de Tempo
17.
Brain Cell Biol ; 35(1): 87-101, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17940915

RESUMO

The receptor tyrosine kinase TrkB and its ligands, brain-derived neurotrophic factor (BDNF) and neurotrophin-4/5 (NT-4/5), are critically important for growth, survival and activity-dependent synaptic strengthening in the central nervous system. These TrkB-mediated actions occur in a highly cell-type specific manner. Here we report that cerebellar Purkinje cells, which are richly endowed with TrkB receptors, develop a normal morphology in trkB-deficient mice. Thus, in contrast to other types of neurons, Purkinje cells do not need TrkB for dendritic growth and spine formation. Instead, we find a moderate delay in the maturation of GABAergic synapses and, more importantly, an abnormal multiple climbing fiber innervation in Purkinje cells in trkB-deficient mice. Thus, our results demonstrate an involvement of TrkB receptors in synapse elimination and reveal a new role for receptor tyrosine kinases in the brain.


Assuntos
Células de Purkinje/citologia , Células de Purkinje/fisiologia , Receptor trkB/metabolismo , Sinapses/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Forma Celular/fisiologia , Dendritos/fisiologia , Dendritos/ultraestrutura , Espinhas Dendríticas/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Camundongos Mutantes , Células de Purkinje/ultraestrutura , Receptor trkB/genética , Ácido gama-Aminobutírico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA