Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acc Chem Res ; 55(2): 171-185, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-34979086

RESUMO

ConspectusThe properties of a material depend upon its physical characteristics, one of these being its crystalline state. Next generation solid-state technologies will integrate crystalline oxides into thermal sensitive processes and composite materials. Crystallization of amorphous phases of metal oxides in the solid state typically requires substantial energy input to induce the amorphous to crystalline phase transformation. In the case of silica, the transformation to α-quartz in a furnace occurs above 1300 °C and that of titania, above 400 °C. These calcination processes are costly in energy but also often degrade complex material architectures or compositions.Thus, low temperature crystallization techniques are required that preserve macro- and mesostructures and complex elemental composition (e.g., organic-, metal-, and semiconductor-metal oxide hybrids/composites). Some solution-based techniques exist to directly fabricate crystalline metal oxides. However, these are not always compatible with the specificities of the system or industrial constraints. A postsynthetic, solid-state approach that reduces crystallization temperature in metal oxides is metal-induced crystallization (MIC).MIC is the introduction of catalytic amounts of a cation, which can be an s-block, p-block, or d-block cation, that migrates through the solid metal oxide lattice. The cation is thought to temporarily break metal oxide bonds, allowing [MOx] polyhedra to rotate and reform bonds with neighboring [MOx] groups in a lower energy crystalline phase. Depending on the system, the cation can favor or defavor the formation of a particular crystalline phase, providing a means to tune the purity and crystalline phase ratios. An advantage of MIC is that, although the crystallization occurs in the solid state, the crystallization process can be accomplished for particle suspensions in liquid media. In this case, the energy required to induce the crystallization can come from, for example, a microwave or an ultrasound bath. The crystallization of particles in suspension avoids aggregation from particle-particle sintering. In the case of thin films, the energy for crystallization typically comes from a laser or calcination.MIC is only recently being used as a low temperature metal oxide crystallization technique, despite being widely used in the semiconductor industry. Here, the mechanism and previous studies in MIC are presented for titania, silica, and other oxides. The beauty of this technique is that it is extremely easy to employ: cations can be incorporated into the system postsynthetically and then are often expelled from the lattice upon phase conversion. We expect MIC to enrich materials for photochromic, optoelectronic, catalyst, biological, and other applications.

2.
Nano Lett ; 22(4): 1778-1785, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35156830

RESUMO

While initial theories on quantum confinement in colloidal quantum dots (QDs) led to analytical band gap/size relations or sizing functions, numerical methods describe size quantization more accurately. However, because of the lack of reliable sizing functions, researchers fit experimental band gap/size data sets using models with redundant, physically meaningless parameters that break down upon extrapolation. Here, we propose a new sizing function based on a proportional correction for nonparabolic bands. Using known bulk parameters, we predict size quantization for groups IV, III-V, II-VI, and IV-VI and metal-halide perovskite semiconductors, including straightforward adaptations for negative-gap semiconductors and nonspherical QDs. Refinement with respect to experimental data is possible using the Bohr diameter as a fitting parameter, by which we show a statistically relevant difference in the band gap/size relation for wurtzite and zinc blende CdSe. The general sizing function proposed here unifies the QD size calibration and enables researchers to assess bulk semiconductor parameters and predict the size quantization in unexplored materials.

3.
Nano Lett ; 21(5): 2046-2052, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33599504

RESUMO

The design and chemical synthesis of plasmonic nanoresonators exhibiting a strong magnetic response in the visible is a key requirement to the realization of efficient functional and self-assembled metamaterials. However, novel applications like Huygens' metasurfaces or mu-near-zero materials require stronger magnetic responses than those currently reported. Our numerical simulations demonstrate that the specific dodecahedral morphology, whereby 12 silver satellites are located on the faces of a nanosized dielectric dodecahedron, provides sufficiently large electric and magnetic dipolar and quadrupolar responses that interfere to produce so-called generalized Huygens' sources, fulfilling the generalized Kerker condition. Using a multistep colloidal engineering approach, we synthesize highly symmetric plasmonic nanoclusters with a controlled silver satellite size and show that they exhibit a strong forward scattering that may be used in various applications such as metasurfaces or perfect absorbers.

4.
Langmuir ; 34(49): 14946-14953, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30075633

RESUMO

DNA is a powerful tool to assemble gold nanoparticles into discrete structures with tunable plasmonic properties for photonic or biomedical applications. Because of their photothermal properties or their use in biological media, these nanostructures can experience drastic modifications of the local temperature that can affect their morphology and, therefore, their optical responses. Using single-nanostructure spectroscopy, we demonstrate that, even with a fully stable DNA linker, gold particle dimers can undergo substantial conformational changes at temperatures larger than 50 °C and aggregate irreversibly. Such temperature-dependent resonant optical properties could find applications in imaging and in the design of nonlinear photothermal sources. Inversely, to provide fully stable DNA-templated plasmonic nanostructures at biologically relevant temperatures, we show how passivating the gold nanoparticles using amphiphilic surface chemistries renders the longitudinal plasmon resonance of gold particle dimers nearly independent of the local temperature.


Assuntos
DNA/química , Ouro/química , Nanopartículas Metálicas/química , Sequência de Bases , DNA/genética , Ouro/efeitos da radiação , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas Metálicas/efeitos da radiação , Microscopia/métodos , Hibridização de Ácido Nucleico , Tamanho da Partícula , Polietilenoglicóis/química , Análise Espectral/métodos , Propriedades de Superfície , Tensoativos/química , Temperatura
5.
Small ; 11(42): 5696-704, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26395441

RESUMO

DNA has been extensively used as a versatile template to assemble inorganic nanoparticles into complex architectures; thanks to its programmability, stability, and long persistence length. But the geometry of self-assembled nanostructures depends on a complex combination of attractive and repulsive forces that can override the shape of a molecular scaffold. In this report, an approach to increase the morphological stability of DNA-templated gold nanoparticle (AuNP) groupings against electrostatic interactions is demonstrated by introducing hydrophobicity on the particle surface. Using single nanostructure spectroscopy, the nanometer-scale distortions of 40 nm diameter AuNP dimers are compared with different hydrophilic, amphiphilic, neutral, and negatively charged surface chemistries, when modifying the local ionic strength. It is observed that, with most ligands, a majority of studied nanostructures deform freely from a stretched geometry to touching particles when increasing the salt concentration while hydrophobicity strongly limits the dimer distortions. Furthermore, an amphiphilic surface chemistry provides DNA-linked AuNP dimers with a high long-term stability against internal aggregation.


Assuntos
DNA/química , Ouro/química , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas Metálicas/química , Tamanho da Partícula , Estabilidade de Medicamentos , Nanoestruturas/química , Nanotecnologia/métodos , Polietilenoglicóis/química , Polimerização , Polímeros , Propriedades de Superfície
6.
Nanomaterials (Basel) ; 13(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36770575

RESUMO

We describe a new approach to making ultrathin Ag nanoshells with a higher level of extinction in the infrared than in the visible. The combination of near-infrared active ultrathin nanoshells with their isotropic optical properties is of interest for energy-saving applications. For such applications, the morphology must be precisely controlled, since the optical response is sensitive to nanometer-scale variations. To achieve this precision, we use a multi-step, reproducible, colloidal chemical synthesis. It includes the reduction of Tollens' reactant onto Sn2+-sensitized silica particles, followed by silver-nitrate reduction by formaldehyde and ammonia. The smooth shells are about 10 nm thick, on average, and have different morphologies: continuous, percolated, and patchy, depending on the quantity of the silver nitrate used. The shell-formation mechanism, studied by optical spectroscopy and high-resolution microscopy, seems to consist of two steps: the formation of very thin and flat patches, followed by their guided regrowth around the silica particle, which is favored by a high reaction rate. The optical and thermal properties of the core-shell particles, embedded in a transparent poly(vinylpyrrolidone) film on a glass substrate, were also investigated. We found that the Ag-nanoshell films can convert 30% of the power of incident near-infrared light into heat, making them very suitable in window glazing for radiative screening from solar light.

7.
ACS Nano ; 17(9): 8796-8806, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37093055

RESUMO

One can nowadays readily generate monodisperse colloidal nanocrystals, but the underlying mechanism of nucleation and growth is still a matter of intense debate. Here, we combine X-ray pair distribution function (PDF) analysis, small-angle X-ray scattering (SAXS), nuclear magnetic resonance (NMR), and transmission electron microscopy (TEM) to investigate the nucleation and growth of zirconia nanocrystals from zirconium chloride and zirconium isopropoxide at 340 °C, in the presence of surfactant (tri-n-octylphosphine oxide). Through E1 elimination, precursor conversion leads to the formation of small amorphous particles (less than 2 nm in diameter). Over the course of the reaction, the total particle concentration decreases while the concentration of nanocrystals stays constant after a sudden increase (nucleation). Kinetic modeling suggests that amorphous particles nucleate into nanocrystals through a second order process and they are also the source of nanocrystal growth. There is no evidence for a soluble monomer. The nonclassical nucleation is related to a precursor decomposition rate that is an order of magnitude higher than the observed crystallization rate. Using different zirconium precursors (e.g., ZrBr4 or Zr(OtBu)4), we can tune the precursor decomposition rate and thus control the nanocrystal size. We expect these findings to help researchers in the further development of colloidal syntheses.

8.
Commun Chem ; 5(1): 7, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36697722

RESUMO

Semi-conducting nanoplatelets are two-dimensional nanoparticles whose thickness is in the nanometer range and controlled at the atomic level. They have come up as a new category of nanomaterial with promising optical properties due to the efficient confinement of the exciton in the thickness direction. In this perspective, we first describe the various conformations of these 2D nanoparticles which display a variety of bent and curved geometries and present experimental evidences linking their curvature to the ligand-induced surface stress. We then focus on the assembly of nanoplatelets into superlattices to harness the particularly efficient energy transfer between them, and discuss different approaches that allow for directional control and positioning in large scale assemblies. We emphasize on the fundamental aspects of the assembly at the colloidal scale in which ligand-induced forces and kinetic effects play a dominant role. Finally, we highlight the collective properties that can be studied when a fine control over the assembly of nanoplatelets is achieved.

9.
Sci Rep ; 11(1): 17831, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34497277

RESUMO

Nanoshells made of a silica core and a gold shell possess an optical response that is sensitive to nanometer-scale variations in shell thickness. The exponential red shift of the plasmon resonance with decreasing shell thickness makes ultrathin nanoshells (less than 10 nm) particularly interesting for broad and tuneable ranges of optical properties. Nanoshells are generally synthesised by coating gold onto seed-covered silica particles, producing continuous shells with a lower limit of 15 nm, due to an inhomogeneous droplet formation on the silica surface during the seed regrowth. In this paper, we investigate the effects of three variations of the synthesis protocol to favour ultrathin nanoshells: seed density, polymer additives and microwave treatment. We first maximised gold seed density around the silica core, but surprisingly its effect is limited. However, we found that the addition of polyvinylpyrrolidone during the shell synthesis leads to higher homogeneity and a thinner shell and that a post-synthetic thermal treatment using microwaves can further smooth the particle surface. This study brings new insights into the synthesis of metallic nanoshells, pushing the limits of ultrathin shell synthesis.

10.
Nanoscale ; 10(41): 19557-19567, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30324955

RESUMO

Developments in DNA nanotechnology offer control of the self-assembly of materials into discrete nanostructures. Within this paradigm, pre-assembled DNA origami with hundreds of DNA strands allows for precise and programmable spatial positioning of functionalised nanoparticles. We propose an alternative approach to construct multiple, structurally different, nanoparticle assemblies from just a few complementary nanoparticle-functionalised DNA strands. The approach exploits local minima in the potential energy landscape of hybridised nanoparticle-DNA structures by employing kinetic control of the assembly. Using a four-strand DNA template, we synthesise five different 3D gold nanoparticle (plasmonic) tetrameric isomers, akin to molecular structural isomers. The number of different structures formed using this approach for a set of DNA strands represents a combinatorial library, which we summarise in a hybridisation pathway tree and use to achieve deposition of tetrahedral assemblies onto substrates in high yield. The ability to program nanoparticle self-assembly pathways gives unprecedented access to unique plasmonic nanostructures.


Assuntos
DNA/química , Ouro/química , Nanopartículas Metálicas/química , Microscopia Crioeletrônica , DNA/metabolismo , Isomerismo , Hibridização de Ácido Nucleico , Polietilenoglicóis/química , Termodinâmica
11.
ACS Nano ; 10(4): 4806-15, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-26972678

RESUMO

Minimizing the luminescence lifetime while maintaining a high emission quantum yield is paramount in optimizing the excitation cross-section, radiative decay rate, and brightness of quantum solid-state light sources, particularly at room temperature, where nonradiative processes can dominate. We demonstrate here that DNA-templated 60 and 80 nm diameter gold nanoparticle dimers, featuring one fluorescent molecule, provide single-photon emission with lifetimes that can fall below 10 ps and typical quantum yields in a 45-70% range. Since these colloidal nanostructures are obtained as a purified aqueous suspension, fluorescence spectroscopy can be performed on both fixed and freely diffusing nanostructures to quantitatively estimate the distributions of decay rate and fluorescence intensity enhancements. These data are in excellent agreement with theoretical calculations and demonstrate that millions of bright fluorescent nanostructures, with radiative lifetimes below 100 ps, can be produced in parallel.

12.
ACS Nano ; 9(1): 978-90, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25565325

RESUMO

The nanometer-scale sensitivity of electromagnetic plasmon coupling allows the translation of minute morphological changes in nanostructures into macroscopic optical signals. We demonstrate here a widefield spectral analysis of 40 nm diameter gold nanoparticle (AuNP) dimers, linked by a short DNA double strand, using a low-cost color CCD camera and allowing a quantitative estimation of interparticle distances in a 3-20 nm range. This analysis can be extended to lower spacings and a parallel monitoring of dimer orientations by performing a simple polarization analysis. Our measurement approach is calibrated against confocal scattering spectroscopy using AuNP dimers that are distorted from a stretched geometry at low ionic strength to touching particles at high salt concentrations. We then apply it to identify dimers featuring two different conformations of the same DNA template and discuss the parallel colorimetric sensing of short sequence-specific DNA single strands using dynamic plasmon rulers.


Assuntos
DNA/química , Nanotecnologia/métodos , Análise Espectral/métodos , Sequência de Bases , DNA/genética , Dimerização , Ouro/química , Sequências Repetidas Invertidas , Nanopartículas Metálicas/química , Fenômenos Ópticos
13.
ACS Nano ; 8(11): 11181-90, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25365786

RESUMO

Subwavelength-sized dielectric Mie resonators have recently emerged as a promising photonic platform, as they combine the advantages of dielectric microstructures and metallic nanoparticles supporting surface plasmon polaritons. Here, we report the capabilities of a dewetting-based process, independent of the sample size, to fabricate Si-based resonators over large scales starting from commercial silicon-on-insulator (SOI) substrates. Spontaneous dewetting is shown to allow the production of monocrystalline Mie-resonators that feature two resonant modes in the visible spectrum, as observed in confocal scattering spectroscopy. Homogeneous scattering responses and improved spatial ordering of the Si-based resonators are observed when dewetting is assisted by electron beam lithography. Finally, exploiting different thermal agglomeration regimes, we highlight the versatility of this technique, which, when assisted by focused ion beam nanopatterning, produces monocrystalline nanocrystals with ad hoc size, position, and organization in complex multimers.

14.
ACS Nano ; 6(12): 10992-8, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23121650

RESUMO

We produce gold nanoparticle dimers with a surface-to-surface distance that varies reversibly by a factor of 3 when hybridizing or removing a single target DNA strand. The dimers are built on one DNA template that features a stem-loop enabling the interparticle distance change. Using electrophoresis, we reach 90% sample purities and demonstrate that this chemical process is reversible in solution at room temperature for a low molar excess of the target DNA strand. The kinetics of the reaction is asymmetric due to steric hindrance in the stem-loop opening process. Furthermore, a statistical analysis of cryo-electron microscopy measurements allows us to provide the first quantitative analysis of distance changes in chemically switchable nanoparticle assemblies.


Assuntos
DNA/química , Dimerização , Ouro/química , Nanopartículas Metálicas/química , Eletroforese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA