Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Respir Cell Mol Biol ; 70(1): 26-38, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37699145

RESUMO

Airway basal stem cells (BSCs) play a critical role in epithelial regeneration. Whether coronavirus disease (COVID-19) affects BSC function is unknown. Here, we derived BSC lines from patients with COVID-19 using tracheal aspirates (TAs) to circumvent the biosafety concerns of live-cell derivation. We show that BSCs derived from the TAs of control patients are bona fide bronchial BSCs. TA BSCs from patients with COVID-19 tested negative for severe acute respiratory syndrome coronavirus 2 RNA; however, these so-termed COVID-19-exposed BSCs in vitro resemble a predominant BSC subpopulation uniquely present in patients with COVID-19, manifested by a proinflammatory gene signature and STAT3 hyperactivation. Furthermore, the sustained STAT3 hyperactivation drives goblet cell differentiation of COVID-19-exposed BSCs in an air-liquid interface. Last, these phenotypes of COVID-19-exposed BSCs can be induced in control BSCs by cytokine cocktail pretreatment. Taken together, acute inflammation in COVID-19 exerts a long-term impact on mucociliary differentiation of BSCs.


Assuntos
COVID-19 , Células Epiteliais , Humanos , Células-Tronco , Diferenciação Celular/fisiologia , Brônquios
2.
Am J Respir Crit Care Med ; 207(9): 1214-1226, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36731066

RESUMO

Rationale: Congenital diaphragmatic hernia (CDH) is characterized by incomplete closure of the diaphragm and lung hypoplasia. The pathophysiology of lung defects in CDH is poorly understood. Objectives: To establish a translational model of human airway epithelium in CDH for pathogenic investigation and therapeutic testing. Methods: We developed a robust methodology of epithelial progenitor derivation from tracheal aspirates of newborns. Basal stem cells (BSCs) from patients with CDH and preterm and term non-CDH control subjects were derived and analyzed by bulk RNA sequencing, assay for transposase accessible chromatin with sequencing, and air-liquid interface differentiation. Lung sections from fetal human CDH samples and the nitrofen rat model of CDH were subjected to histological assessment of epithelial defects. Therapeutics to restore epithelial differentiation were evaluated in human epithelial cell culture and the nitrofen rat model of CDH. Measurements and Main Results: Transcriptomic and epigenetic profiling of CDH and control BSCs reveals a proinflammatory signature that is manifested by hyperactive nuclear factor kappa B and independent of severity and hernia size. In addition, CDH BSCs exhibit defective epithelial differentiation in vitro that recapitulates epithelial phenotypes found in fetal human CDH lung samples and fetal tracheas of the nitrofen rat model of CDH. Furthermore, blockade of nuclear factor kappa B hyperactivity normalizes epithelial differentiation phenotypes of human CDH BSCs in vitro and in nitrofen rat tracheas in vivo. Conclusions: Our findings have identified an underlying proinflammatory signature and BSC differentiation defects as a potential therapeutic target for airway epithelial defects in CDH.


Assuntos
Hérnias Diafragmáticas Congênitas , Recém-Nascido , Ratos , Humanos , Animais , NF-kappa B , Ratos Sprague-Dawley , Éteres Fenílicos , Pulmão/patologia , Modelos Animais de Doenças
3.
Pediatr Res ; 91(5): 1090-1098, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34750520

RESUMO

BACKGROUND: During the COVID-19 pandemic, thousands of pregnant women have been infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The implications of maternal SARS-CoV-2 infection on fetal and childhood well-being need to be characterized. We aimed to characterize the fetal immune response to maternal SARS-CoV-2 infection. METHODS: We performed single-cell RNA-sequencing and T cell receptor sequencing on cord blood mononuclear cells (CBMCs) from newborns of mothers infected with SARS-CoV-2 in the third trimester (cases) or without SARS-CoV-2 infection (controls). RESULTS: We identified widespread gene expression changes in CBMCs from cases, including upregulation of interferon-stimulated genes and major histocompatibility complex genes in CD14+ monocytes, transcriptional changes suggestive of activation of plasmacytoid dendritic cells, and activation and exhaustion of natural killer cells. Lastly, we observed fetal T cell clonal expansion in cases compared to controls. CONCLUSIONS: As none of the infants were infected with SARS-CoV-2, our results suggest that maternal SARS-CoV-2 infection might modulate the fetal immune system in the absence of vertical transmission. IMPACT: The implications of maternal SARS-CoV-2 infection in the absence of vertical transmission on fetal and childhood well-being are poorly understood. Maternal SARS-CoV-2 infection might modulate the fetal immune system in the absence of vertical transmission. This study raises important questions about the untoward effects of maternal SARS-CoV-2 on the fetus, even in the absence of vertical transmission.


Assuntos
COVID-19 , Complicações Infecciosas na Gravidez , Criança , Feminino , Feto , Humanos , Imunidade , Imunofenotipagem , Recém-Nascido , Transmissão Vertical de Doenças Infecciosas , Pandemias , Gravidez , Complicações Infecciosas na Gravidez/epidemiologia , SARS-CoV-2
4.
Eur J Pediatr ; 181(9): 3545-3548, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35804198

RESUMO

The neonatal intensive care unit (NICU) is a high-acuity, stressful unit for both parents and staff. Up to 50% of mothers and partners experience emotional distress (i.e., depression, anxiety, or posttraumatic stress) during NICU hospitalization and 30-60% continue to experience distress after discharge. Similarly, up to 50% of NICU staff report burnout and emotional distress. Although healthcare providers have developed interdisciplinary guidelines to enhance psychosocial resources for parents and staff, standardized psychosocial services are lacking. The purpose of this short communication is to describe: (1) the need for psychosocial interventions for NICU parents and staff; (2) existent psychosocial programs and their gaps and limitations; and (3) future directions for psychosocial care in NICU settings. We reviewed the current literature and propose a new conceptual model to inform psychosocial interventions for the NICU. We argue that brief, evidence-based, resiliency, and relationship-based programs are needed to enhance parent and staff outcomes and, ultimately, child development and the NICU unit culture. CONCLUSION: Given the lack of standardized psychosocial care, new interventions for NICU families and staff are needed more than ever. Resiliency, relationship-based interventions that leverage multidisciplinary support may be an innovative way to enhance NICU outcomes and care. WHAT IS KNOWN: • 40-50% of parents in the NICU report elevated emotional distress and 30-50% of staff report burnout. • Psychosocial interventions for parents and staff are needed, yet lacking. WHAT IS NEW: • Interventions that focus on resiliency and relationships may improve the culture of the NICU. • New multidisciplinary collaborations and approaches are needed to improve implementation.


Assuntos
Unidades de Terapia Intensiva Neonatal , Pais , Emoções , Feminino , Pessoal de Saúde , Humanos , Recém-Nascido , Mães , Pais/psicologia
5.
Pediatr Res ; 89(3): 502-509, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32365352

RESUMO

BACKGROUND: Bronchopulmonary dysplasia remains one of the most common complications of prematurity, despite significant improvements in perinatal care. Functional modeling of human lung development and disease, like BPD, is limited by our ability to access the lung and to maintain relevant progenitor cell populations in culture. METHODS: We supplemented Rho/SMAD signaling inhibition with mTOR inhibition to generate epithelial basal cell-like cell lines from tracheal aspirates of neonates. RESULTS: Single-cell RNA-sequencing confirmed the presence of epithelial cells in tracheal aspirates obtained from intubated neonates. Using Rho/SMAD/mTOR triple signaling inhibition, neonatal tracheal aspirate-derived (nTAD) basal cell-like cells can be expanded long term and retain the ability to differentiate into pseudostratified airway epithelium. CONCLUSIONS: Our data demonstrate that neonatal tracheal aspirate-derived epithelial cells can provide a novel ex vivo human cellular model to study neonatal lung development and disease. IMPACT: Airway epithelial basal cell-like cell lines were derived from human neonatal tracheal aspirates. mTOR inhibition significantly extends in vitro proliferation of neonatal tracheal aspirate-derived basal cell-like cells (nTAD BCCs). nTAD BCCs can be differentiated into functional airway epithelium. nTAD BCCs provide a novel model to investigate perinatal lung development and diseases.


Assuntos
Células Epiteliais/efeitos dos fármacos , Proteínas Smad/antagonistas & inibidores , Serina-Treonina Quinases TOR/antagonistas & inibidores , Traqueia/citologia , Quinases Associadas a rho/antagonistas & inibidores , Sequência de Bases , Líquidos Corporais/citologia , Displasia Broncopulmonar , Diferenciação Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Células Cultivadas , Células Epiteliais/química , Células Epiteliais/citologia , Humanos , Recém-Nascido , Cultura Primária de Células , Análise de Célula Única , Sirolimo/farmacologia , Proteínas Smad/fisiologia , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Sucção , Serina-Treonina Quinases TOR/fisiologia , Quinases Associadas a rho/fisiologia
6.
J Pediatr ; 227: 45-52.e5, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32827525

RESUMO

OBJECTIVES: As schools plan for re-opening, understanding the potential role children play in the coronavirus infectious disease 2019 (COVID-19) pandemic and the factors that drive severe illness in children is critical. STUDY DESIGN: Children ages 0-22 years with suspected severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection presenting to urgent care clinics or being hospitalized for confirmed/suspected SARS-CoV-2 infection or multisystem inflammatory syndrome in children (MIS-C) at Massachusetts General Hospital were offered enrollment in the Massachusetts General Hospital Pediatric COVID-19 Biorepository. Enrolled children provided nasopharyngeal, oropharyngeal, and/or blood specimens. SARS-CoV-2 viral load, ACE2 RNA levels, and serology for SARS-CoV-2 were quantified. RESULTS: A total of 192 children (mean age, 10.2 ± 7.0 years) were enrolled. Forty-nine children (26%) were diagnosed with acute SARS-CoV-2 infection; an additional 18 children (9%) met the criteria for MIS-C. Only 25 children (51%) with acute SARS-CoV-2 infection presented with fever; symptoms of SARS-CoV-2 infection, if present, were nonspecific. Nasopharyngeal viral load was highest in children in the first 2 days of symptoms, significantly higher than hospitalized adults with severe disease (P = .002). Age did not impact viral load, but younger children had lower angiotensin-converting enzyme 2 expression (P = .004). Immunoglobulin M (IgM) and Immunoglobulin G (IgG) to the receptor binding domain of the SARS-CoV-2 spike protein were increased in severe MIS-C (P < .001), with dysregulated humoral responses observed. CONCLUSIONS: This study reveals that children may be a potential source of contagion in the SARS-CoV-2 pandemic despite having milder disease or a lack of symptoms; immune dysregulation is implicated in severe postinfectious MIS-C.


Assuntos
COVID-19 , Adolescente , Fatores Etários , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/imunologia , COVID-19/transmissão , Teste para COVID-19 , Criança , Pré-Escolar , Comorbidade , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Massachusetts/epidemiologia , Pandemias , Índice de Gravidade de Doença , Carga Viral , Adulto Jovem
7.
BMC Med Res Methodol ; 20(1): 228, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917141

RESUMO

BACKGROUND: COVID-19, the disease caused by the highly infectious and transmissible coronavirus SARS-CoV-2, has quickly become a morbid global pandemic. Although the impact of SARS-CoV-2 infection in children is less clinically apparent, collecting high-quality biospecimens from infants, children, and adolescents in a standardized manner during the COVID-19 pandemic is essential to establish a biologic understanding of the disease in the pediatric population. This biorepository enables pediatric centers world-wide to collect samples uniformly to drive forward our understanding of COVID-19 by addressing specific pediatric and neonatal COVID-19-related questions. METHODS: A COVID-19 biospecimen collection study was implemented with strategic enrollment guidelines to include patients seen in urgent care clinics and hospital settings, neonates born to SARS-CoV-2 infected mothers, and asymptomatic children. The methodology described here, details the importance of establishing collaborations between the clinical and research teams to harmonize protocols for patient recruitment and sample collection, processing and storage. It also details modifications required for biobanking during a surge of the COVID-19 pandemic. RESULTS: Considerations and challenges facing enrollment of neonatal and pediatric cohorts are described. A roadmap is laid out for successful collection, processing, storage and database management of multiple pediatric samples such as blood, nasopharyngeal and oropharyngeal swabs, sputum, saliva, tracheal aspirates, stool, and urine. Using this methodology, we enrolled 327 participants, who provided a total of 972 biospecimens. CONCLUSIONS: Pediatric biospecimens will be key in answering questions relating to viral transmission by children, differences between pediatric and adult viral susceptibility and immune responses, the impact of maternal SARS-CoV-2 infection on fetal development, and factors driving the Multisystem Inflammatory Syndrome in Children. The specimens in this biorepository will allow necessary comparative studies between children and adults, help determine the accuracy of current pediatric viral testing techniques, in addition to, understanding neonatal exposure to SARS-CoV-2 infection and disease abnormalities. The successful establishment of a pediatric biorepository is critical to provide insight into disease pathogenesis, and subsequently, develop future treatment and vaccination strategies.


Assuntos
Betacoronavirus , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/diagnóstico , Manejo de Espécimes/métodos , Adolescente , COVID-19 , Criança , Pré-Escolar , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/transmissão , Feminino , Desenvolvimento Fetal , Hospitalização , Humanos , Lactente , Recém-Nascido , Masculino , Pandemias , Pneumonia Viral/imunologia , Pneumonia Viral/transmissão , SARS-CoV-2
8.
BMC Med Res Methodol ; 20(1): 215, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32842979

RESUMO

BACKGROUND: Collection of biospecimens is a critical first step to understanding the impact of COVID-19 on pregnant women and newborns - vulnerable populations that are challenging to enroll and at risk of exclusion from research. We describe the establishment of a COVID-19 perinatal biorepository, the unique challenges imposed by the COVID-19 pandemic, and strategies used to overcome them. METHODS: A transdisciplinary approach was developed to maximize the enrollment of pregnant women and their newborns into a COVID-19 prospective cohort and tissue biorepository, established on March 19, 2020 at Massachusetts General Hospital (MGH). The first SARS-CoV-2 positive pregnant woman was enrolled on April 2, and enrollment was expanded to SARS-CoV-2 negative controls on April 20. A unified enrollment strategy with a single consent process for pregnant women and newborns was implemented on May 4. SARS-CoV-2 status was determined by viral detection on RT-PCR of a nasopharyngeal swab. Wide-ranging and pregnancy-specific samples were collected from maternal participants during pregnancy and postpartum. Newborn samples were collected during the initial hospitalization. RESULTS: Between April 2 and June 9, 100 women and 78 newborns were enrolled in the MGH COVID-19 biorepository. The rate of dyad enrollment and number of samples collected per woman significantly increased after changes to enrollment strategy (from 5 to over 8 dyads/week, P < 0.0001, and from 7 to 9 samples, P < 0.01). The number of samples collected per woman was higher in SARS-CoV-2 negative than positive women (9 vs 7 samples, P = 0.0007). The highest sample yield was for placenta (96%), umbilical cord blood (93%), urine (99%), and maternal blood (91%). The lowest-yield sample types were maternal stool (30%) and breastmilk (22%). Of the 61 delivered women who also enrolled their newborns, fewer women agreed to neonatal blood compared to cord blood (39 vs 58, P < 0.0001). CONCLUSIONS: Establishing a COVID-19 perinatal biorepository required patient advocacy, transdisciplinary collaboration and creative solutions to unique challenges. This biorepository is unique in its comprehensive sample collection and the inclusion of a control population. It serves as an important resource for research into the impact of COVID-19 on pregnant women and newborns and provides lessons for future biorepository efforts.


Assuntos
Betacoronavirus , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/psicologia , Participação do Paciente , Pneumonia Viral/diagnóstico , Pneumonia Viral/psicologia , Complicações Infecciosas na Gravidez/diagnóstico , Manejo de Espécimes , Adulto , COVID-19 , Feminino , Humanos , Recém-Nascido , Pandemias , Seleção de Pacientes , Assistência Perinatal , Gravidez , Complicações Infecciosas na Gravidez/psicologia , SARS-CoV-2
9.
Proc Natl Acad Sci U S A ; 111(44): 15768-73, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25324523

RESUMO

Rapid progression through the cell cycle and a very short G1 phase are defining characteristics of embryonic stem cells. This distinct cell cycle is driven by a positive feedback loop involving Rb inactivation and reduced oscillations of cyclins and cyclin-dependent kinase (Cdk) activity. In this setting, we inquired how ES cells avoid the potentially deleterious consequences of premature mitotic entry. We found that the pluripotency transcription factor Oct4 (octamer-binding transcription factor 4) plays an unappreciated role in the ES cell cycle by forming a complex with cyclin-Cdk1 and inhibiting Cdk1 activation. Ectopic expression of Oct4 or a mutant lacking transcriptional activity recapitulated delayed mitotic entry in HeLa cells. Reduction of Oct4 levels in ES cells accelerated G2 progression, which led to increased chromosomal missegregation and apoptosis. Our data demonstrate an unexpected nontranscriptional function of Oct4 in the regulation of mitotic entry.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Células-Tronco Embrionárias/metabolismo , Fase G2/fisiologia , Fator 3 de Transcrição de Octâmero/metabolismo , Animais , Proteína Quinase CDC2 , Quinases Ciclina-Dependentes/genética , Ciclinas/genética , Ciclinas/metabolismo , Células-Tronco Embrionárias/citologia , Ativação Enzimática/fisiologia , Fase G1/fisiologia , Células HeLa , Humanos , Camundongos , Fator 3 de Transcrição de Octâmero/genética , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo
12.
J Am Soc Nephrol ; 25(6): 1211-25, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24357672

RESUMO

Human pluripotent stem cells (hPSCs) can generate a diversity of cell types, but few methods have been developed to derive cells of the kidney lineage. Here, we report a highly efficient system for differentiating human embryonic stem cells and induced pluripotent stem cells (referred to collectively as hPSCs) into cells expressing markers of the intermediate mesoderm (IM) that subsequently form tubule-like structures. Treatment of hPSCs with the glycogen synthase kinase-3ß inhibitor CHIR99021 induced BRACHYURY(+)MIXL1(+) mesendoderm differentiation with nearly 100% efficiency. In the absence of additional exogenous factors, CHIR99021-induced mesendodermal cells preferentially differentiated into cells expressing markers of lateral plate mesoderm with minimal IM differentiation. However, the sequential treatment of hPSCs with CHIR99021 followed by fibroblast growth factor-2 and retinoic acid generated PAX2(+)LHX1(+) cells with 70%-80% efficiency after 3 days of differentiation. Upon growth factor withdrawal, these PAX2(+)LHX1(+) cells gave rise to apically ciliated tubular structures that coexpressed the proximal tubule markers Lotus tetragonolobus lectin, N-cadherin, and kidney-specific protein and partially integrated into embryonic kidney explant cultures. With the addition of FGF9 and activin, PAX2(+)LHX1(+) cells specifically differentiated into cells expressing SIX2, SALL1, and WT1, markers of cap mesenchyme nephron progenitor cells. Our findings demonstrate the effective role of fibroblast growth factor signaling in inducing IM differentiation in hPSCs and establish the most rapid and efficient system whereby hPSCs can be differentiated into cells with features characteristic of kidney lineage cells.


Assuntos
Diferenciação Celular/fisiologia , Túbulos Renais Proximais/citologia , Mesoderma/citologia , Células-Tronco Pluripotentes/citologia , Animais , Antineoplásicos/farmacologia , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Feminino , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fibroblastos/citologia , Prepúcio do Pênis/citologia , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Humanos , Túbulos Renais Proximais/embriologia , Túbulos Renais Proximais/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Masculino , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos , Fator de Transcrição PAX2/metabolismo , Células-Tronco Pluripotentes/efeitos dos fármacos , Gravidez , Piridinas/farmacologia , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Tretinoína/farmacologia
13.
Stem Cells ; 31(7): 1287-97, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23400930

RESUMO

In congenital mitochondrial DNA (mtDNA) disorders, a mixture of normal and mutated mtDNA (termed heteroplasmy) exists at varying levels in different tissues, which determines the severity and phenotypic expression of disease. Pearson marrow pancreas syndrome (PS) is a congenital bone marrow failure disorder caused by heteroplasmic deletions in mtDNA. The cause of the hematopoietic failure in PS is unknown, and adequate cellular and animal models are lacking. Induced pluripotent stem (iPS) cells are particularly amenable for studying mtDNA disorders, as cytoplasmic genetic material is retained during direct reprogramming. Here, we derive and characterize iPS cells from a patient with PS. Taking advantage of the tendency for heteroplasmy to change with cell passage, we isolated isogenic PS-iPS cells without detectable levels of deleted mtDNA. We found that PS-iPS cells carrying a high burden of deleted mtDNA displayed differences in growth, mitochondrial function, and hematopoietic phenotype when differentiated in vitro, compared to isogenic iPS cells without deleted mtDNA. Our results demonstrate that reprogramming somatic cells from patients with mtDNA disorders can yield pluripotent stem cells with varying burdens of heteroplasmy that might be useful in the study and treatment of mitochondrial diseases.


Assuntos
DNA Mitocondrial/genética , Células-Tronco Pluripotentes Induzidas/fisiologia , Doenças Mitocondriais/genética , Acil-CoA Desidrogenase de Cadeia Longa/deficiência , Acil-CoA Desidrogenase de Cadeia Longa/metabolismo , Anemia Sideroblástica/genética , Anemia Sideroblástica/metabolismo , Anemia Sideroblástica/patologia , Diferenciação Celular/genética , Linhagem Celular , Pré-Escolar , Síndrome Congênita de Insuficiência da Medula Óssea , DNA Mitocondrial/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Erros Inatos do Metabolismo Lipídico/diagnóstico , Erros Inatos do Metabolismo Lipídico/metabolismo , Erros Inatos do Metabolismo Lipídico/patologia , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Doenças Musculares/diagnóstico , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Deleção de Sequência
14.
Nature ; 451(7175): 141-6, 2008 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-18157115

RESUMO

Pluripotency pertains to the cells of early embryos that can generate all of the tissues in the organism. Embryonic stem cells are embryo-derived cell lines that retain pluripotency and represent invaluable tools for research into the mechanisms of tissue formation. Recently, murine fibroblasts have been reprogrammed directly to pluripotency by ectopic expression of four transcription factors (Oct4, Sox2, Klf4 and Myc) to yield induced pluripotent stem (iPS) cells. Using these same factors, we have derived iPS cells from fetal, neonatal and adult human primary cells, including dermal fibroblasts isolated from a skin biopsy of a healthy research subject. Human iPS cells resemble embryonic stem cells in morphology and gene expression and in the capacity to form teratomas in immune-deficient mice. These data demonstrate that defined factors can reprogramme human cells to pluripotency, and establish a method whereby patient-specific cells might be established in culture.


Assuntos
Proteínas HMGB/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição/metabolismo , Adulto , Animais , Diferenciação Celular , Forma Celular , Células Cultivadas , Metilação de DNA , Proteínas de Ligação a DNA/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Feto/citologia , Fibroblastos/citologia , Perfilação da Expressão Gênica , Proteínas HMGB/genética , Proteínas de Homeodomínio/genética , Humanos , Recém-Nascido , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/genética , Células-Tronco Pluripotentes/transplante , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-myc/genética , Fatores de Transcrição SOXB1 , Teratoma/patologia , Fatores de Transcrição/genética , Transplante Heterólogo
16.
Proc Natl Acad Sci U S A ; 108(48): 19252-7, 2011 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-22084091

RESUMO

ES cells proliferate with very short gap phases yet maintain their capacity to differentiate. It had been thought that the levels of cyclins and other substrates of ubiquitin ligase APC/C remain nearly constant and Cdk activity remains constitutively high in mouse ES cells. Here we demonstrate that APC/C (anaphase-promoting complex/cyclosome) enzyme is active in ES cells but attenuated by high levels of the Emi1 (early mitotic inhibitor-1) protein. Despite the presence of high Cdk activity during the G1 phase, chromatin can be effectively licensed for DNA replication and fast entry into the S phase can still occur. High Cdk activity during S-G2-M phases produces high levels of the DNA replication factor Cdt1, and this leads to efficient Mcm proteins loading on chromatin after mitotic exit. Although disturbing the usual balance between Cdk activity and APC/C activity found in somatic cells, a few key adaptations allow normal progression of a very rapid cell cycle.


Assuntos
Adaptação Biológica/fisiologia , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/fisiologia , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Animais , Linhagem Celular , Cromatina/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Células-Tronco Embrionárias/enzimologia , Citometria de Fluxo , Immunoblotting , Imunoprecipitação , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Ubiquitinação
17.
Pediatrics ; 153(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38482582

RESUMO

BACKGROUND AND OBJECTIVES: Guidelines for the management of neonatal hyperbilirubinemia have helped to reduce rates of significant hyperbilirubinemia. However, recent evidence suggesting overtreatment and potential harms of phototherapy have informed the American Academy of Pediatrics clinical practice guideline revision and the accompanying increase in phototherapy thresholds. These changes are predicted to safely reduce overuse; however, to date, the exact effect of these guidelines has not been established. METHODS: We conducted a retrospective study of newborns born at ≥35 weeks' gestation across a network of 8 hospitals between January 2022 and June 2023. Outcomes included rates of phototherapy and total serum bilirubin (TSB) measurements before and after guideline publication, as well as clinical outcomes, including length of stay, readmissions, and duration of phototherapy. RESULTS: In our cohort of >22 000 newborns, we observed a 47% decrease in phototherapy utilization, from 3.9% to 2.1% (P < .001). TSB measurements were reduced by 23%, from 712 to 551 measurements per 1000 newborns (P < .001), without an increase in outpatient TSB measurements. We did not observe an increase in readmissions receiving phototherapy, and length of stay increased by only 1 hour (P < .001). CONCLUSIONS: Our study reveals that the publication of the updated American Academy of Pediatrics 2022 hyperbilirubinemia guidelines has likely yielded a significant reduction in phototherapy use and serum bilirubin measurement. Dedicated quality improvement initiatives may help determine which implementation strategies are most effective. Further population-level studies are needed to confirm safety with ongoing guideline uptake.


Assuntos
Hiperbilirrubinemia Neonatal , Icterícia Neonatal , Humanos , Recém-Nascido , Criança , Estudos Retrospectivos , Bilirrubina , Hiperbilirrubinemia Neonatal/terapia , Hiperbilirrubinemia , Fototerapia
18.
Hosp Pediatr ; 13(4): 317-325, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36855896

RESUMO

OBJECTIVES: To describe the characteristics of individuals undergoing toxicology testing at delivery for a sole indication of cannabis use and to evaluate the rate of unexpected positive toxicology testing results among this cohort. METHODS: This retrospective cohort study included dyads with a maternal history of cannabis use who underwent peripartum toxicology testing between 2016 and 2020 at 5 birthing hospitals in Massachusetts. We collected information on maternal demographic characteristics and toxicology test results and reviewed records of dyads with unexpected positive results to identify additional social risk factors and clinical outcomes. RESULTS: Of 60 608 live births reviewed, 1924 dyads underwent toxicology testing, including 614 (31.9%) for a sole indication of cannabis use. Significantly greater percentages of patients in the cannabis cohort were <25 years old (32.4% vs 6.1% of the birthing population, P <.001), non-Hispanic Black (32.4% vs 8.1%, P < .001), Hispanic or Latino (30.5% vs 15.5%), American Indian/Alaskan (0.7% vs 0.1%), and publicly insured (39.9% vs 15.6%, P <.001). Eight of the 614 dyads (1.3%) had an unexpected positive toxicology test result, including 2 (0.3%) unexpectedly positive for opioids. Seven dyads (1.1%) had false positive test results for unexpected substances. Only 1 test result changed clinical management; a urine test positive for opioids prompted monitoring (but not medication) for neonatal opioid withdrawal syndrome. CONCLUSIONS: Toxicology testing of patients for a sole indication of cannabis use, without other risk factors, may be of limited utility in elucidating other substance use and may exacerbate existing disparities in perinatal outcomes.


Assuntos
Cannabis , Exposição Materna , Transtornos Relacionados ao Uso de Substâncias , Adulto , Feminino , Humanos , Recém-Nascido , Gravidez , Analgésicos Opioides , Hispânico ou Latino , Estudos Retrospectivos
19.
bioRxiv ; 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37781574

RESUMO

Respiratory syncytial virus (RSV) can cause severe disease especially in infants; however, mechanisms of age-associated disease severity remain elusive. Here, employing human bronchial epithelium models generated from tracheal aspirate-derived basal stem cells of neonates and adults, we investigated whether age regulates RSV-epithelium interaction to determine disease severity. We show that following RSV infection, only neonatal epithelium model exhibited cytopathy and mucus hyperplasia, and neonatal epithelium had more robust viral spread and inflammatory responses than adult epithelium. Mechanistically, RSV-infected neonatal ciliated cells displayed age-related impairment of STAT3 activation, rendering susceptibility to apoptosis, which facilitated viral spread. In contrast, SARS-CoV-2 infection of ciliated cells had no effect on STAT3 activation and was not affected by age. Taken together, our findings identify an age-related and RSV-specific interaction with neonatal bronchial epithelium that critically contributes to severity of infection, and STAT3 activation offers a potential strategy to battle severe RSV disease in infants.

20.
STAR Protoc ; 3(2): 101390, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35600918

RESUMO

Patient-specific airway basal stem cells (BSCs) can be derived from tracheal aspirate (TA) samples from intubated patients, thus providing an invaluable lung stem cell derivation method that bypasses the need for lung tissue. The primary culture of BSCs provides the ideal model to study the function and differentiation of the conducting lung epithelium. This protocol outlines the specific steps for isolation, culture maintenance, passaging, freezing, thawing, differentiation, and immunofluorescence characterization of human TA-derived airway BSCs. For complete details on the use and execution of this protocol, please refer to Lu et al. (2021).


Assuntos
Pulmão , Células-Tronco , Diferenciação Celular , Epitélio , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA