Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Microbiol ; 23(10): 5716-5732, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33538380

RESUMO

Because they comprise some of the most efficient wood-decayers, Polyporales fungi impact carbon cycling in forest environment. Despite continuous discoveries on the enzymatic machinery involved in wood decomposition, the vision on their evolutionary adaptation to wood decay and genome diversity remains incomplete. We combined the genome sequence information from 50 Polyporales species, including 26 newly sequenced genomes and sought for genomic and functional adaptations to wood decay through the analysis of genome composition and transcriptome responses to different carbon sources. The genomes of Polyporales from different phylogenetic clades showed poor conservation in macrosynteny, indicative of genome rearrangements. We observed different gene family expansion/contraction histories for plant cell wall degrading enzymes in core polyporoids and phlebioids and captured expansions for genes involved in signalling and regulation in the lineages of white rotters. Furthermore, we identified conserved cupredoxins, thaumatin-like proteins and lytic polysaccharide monooxygenases with a yet uncharacterized appended module as new candidate players in wood decomposition. Given the current need for enzymatic toolkits dedicated to the transformation of renewable carbon sources, the observed genomic diversity among Polyporales strengthens the relevance of mining Polyporales biodiversity to understand the molecular mechanisms of wood decay.


Assuntos
Basidiomycota , Polyporales , Basidiomycota/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Filogenia , Polyporales/genética , Polyporales/metabolismo , Transcriptoma/genética , Madeira/microbiologia
2.
BMC Biotechnol ; 20(1): 27, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398071

RESUMO

BACKGROUND: Environmental pollution is one of the major problems that the world is facing today. Several approaches have been taken, from physical and chemical methods to biotechnological strategies (e.g. the use of oxidoreductases). Oxidative enzymes from microorganisms offer eco-friendly, cost-effective processes amenable to biotechnological applications, such as in industrial dye decolorization. The aim of this study was to screen marine-derived fungal strains isolated from three coastal areas in Tunisia to identify laccase-like activities, and to produce and characterize active cell-free supernatants of interest for dye decolorization. RESULTS: Following the screening of 20 fungal strains isolated from the harbors of Sfax and Monastir (Tunisia), five strains were identified that displayed laccase-like activities. Molecular-based taxonomic approaches identified these strains as belonging to the species Trichoderma asperellum, Stemphylium lucomagnoense and Aspergillus nidulans. Among these five isolates, one T. asperellum strain (T. asperellum 1) gave the highest level of secreted oxidative activities, and so was chosen for further studies. Optimization of the growth medium for liquid cultures was first undertaken to improve the level of laccase-like activity in culture supernatants. Finally, the culture supernatant of T. asperellum 1 decolorized different synthetic dyes belonging to diverse dye families, in the presence or absence of 1-hydroxybenzotriazole (HBT) as a mediator. CONCLUSIONS: The optimal growth conditions to produce laccase-like active cell-free supernatants from T. asperellum 1 were 1.8 mM CuSO4 as an inducer, 1% NaCl to mimic a seawater environment and 3% sucrose as a carbon source. The culture supernatant of T. asperellum 1 effectively decolorized different synthetic dyes belonging to diverse chemical classes, and the presence of HBT as a mediator improved the decolorization process.


Assuntos
Biotecnologia , Fungos/enzimologia , Lacase/metabolismo , Ascomicetos , Aspergillus nidulans , Corantes/química , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Hypocreales , Lacase/genética , Programas de Rastreamento , Filogenia , Água do Mar/microbiologia , Alga Marinha/microbiologia
3.
Appl Microbiol Biotechnol ; 99(8): 3375-85, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25761625

RESUMO

The Lavandula genus, which includes lavender (Lavandula angustifolia) and lavandin (L. angustifolia × Lavandula latifolia), is cultivated worldwide for its essential oils, which find applications in perfumes, cosmetics, food processing and, more recently, in aromatherapy products. The chemical composition of lavender and lavandin essential oils, usually produced by steam distillation from the flowering stems, is characterized by the presence of terpenes (e.g. linalool and linalyl acetate) and terpenoids (e.g. 1,8-cineole), which are mainly responsible for their characteristic flavour and their biological and therapeutic properties. Lavender and lavandin distilled straws, the by-products of oil extraction, were traditionally used for soil replenishment or converted to a fuel source. They are mineral- and carbon-rich plant residues and, therefore, a cheap, readily available source of valuable substances of industrial interest, especially aroma and antioxidants (e.g. terpenoids, lactones and phenolic compounds including coumarin, herniarin, α-bisabolol, rosmarinic and chlorogenic acids). Accordingly, recent studies have emphasized the possible uses of lavender and lavandin straws in fermentative or enzymatic processes involving various microorganisms, especially filamentous fungi, for the production of antimicrobials, antioxidants and other bioproducts with pharmaceutical and cosmetic activities, opening up new challenging perspectives in white biotechnology applications.


Assuntos
Biotecnologia/métodos , Destilação/métodos , Lavandula/química , Óleos Voláteis/isolamento & purificação , Óleos de Plantas/isolamento & purificação , Humanos , Caules de Planta/química
4.
BMC Genomics ; 15: 486, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24942338

RESUMO

BACKGROUND: Saprophytic filamentous fungi are ubiquitous micro-organisms that play an essential role in photosynthetic carbon recycling. The wood-decayer Pycnoporus cinnabarinus is a model fungus for the study of plant cell wall decomposition and is used for a number of applications in green and white biotechnology. RESULTS: The 33.6 megabase genome of P. cinnabarinus was sequenced and assembled, and the 10,442 predicted genes were functionally annotated using a phylogenomic procedure. In-depth analyses were carried out for the numerous enzyme families involved in lignocellulosic biomass breakdown, for protein secretion and glycosylation pathways, and for mating type. The P. cinnabarinus genome sequence revealed a consistent repertoire of genes shared with wood-decaying basidiomycetes. P. cinnabarinus is thus fully equipped with the classical families involved in cellulose and hemicellulose degradation, whereas its pectinolytic repertoire appears relatively limited. In addition, P. cinnabarinus possesses a complete versatile enzymatic arsenal for lignin breakdown. We identified several genes encoding members of the three ligninolytic peroxidase types, namely lignin peroxidase, manganese peroxidase and versatile peroxidase. Comparative genome analyses were performed in fungi displaying different nutritional strategies (white-rot and brown-rot modes of decay). P. cinnabarinus presents a typical distribution of all the specific families found in the white-rot life style. Growth profiling of P. cinnabarinus was performed on 35 carbon sources including simple and complex substrates to study substrate utilization and preferences. P. cinnabarinus grew faster on crude plant substrates than on pure, mono- or polysaccharide substrates. Finally, proteomic analyses were conducted from liquid and solid-state fermentation to analyze the composition of the secretomes corresponding to growth on different substrates. The distribution of lignocellulolytic enzymes in the secretomes was strongly dependent on growth conditions, especially for lytic polysaccharide mono-oxygenases. CONCLUSIONS: With its available genome sequence, P. cinnabarinus is now an outstanding model system for the study of the enzyme machinery involved in the degradation or transformation of lignocellulosic biomass.


Assuntos
Lignina/metabolismo , Pycnoporus/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Loci Gênicos , Genoma Fúngico , Glicosilação , Anotação de Sequência Molecular , Peroxidases/genética , Processamento de Proteína Pós-Traducional , Proteoma/genética , Proteoma/metabolismo , Pycnoporus/enzimologia , Análise de Sequência de DNA , Madeira/microbiologia
5.
BMC Genomics ; 13: 57, 2012 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-22300648

RESUMO

BACKGROUND: Filamentous fungi are potent biomass degraders due to their ability to thrive in ligno(hemi)cellulose-rich environments. During the last decade, fungal genome sequencing initiatives have yielded abundant information on the genes that are putatively involved in lignocellulose degradation. At present, additional experimental studies are essential to provide insights into the fungal secreted enzymatic pools involved in lignocellulose degradation. RESULTS: In this study, we performed a wide analysis of 20 filamentous fungi for which genomic data are available to investigate their biomass-hydrolysis potential. A comparison of fungal genomes and secretomes using enzyme activity profiling revealed discrepancies in carbohydrate active enzymes (CAZymes) sets dedicated to plant cell wall. Investigation of the contribution made by each secretome to the saccharification of wheat straw demonstrated that most of them individually supplemented the industrial Trichoderma reesei CL847 enzymatic cocktail. Unexpectedly, the most striking effect was obtained with the phytopathogen Ustilago maydis that improved the release of total sugars by 57% and of glucose by 22%. Proteomic analyses of the best-performing secretomes indicated a specific enzymatic mechanism of U. maydis that is likely to involve oxido-reductases and hemicellulases. CONCLUSION: This study provides insight into the lignocellulose-degradation mechanisms by filamentous fungi and allows for the identification of a number of enzymes that are potentially useful to further improve the industrial lignocellulose bioconversion process.


Assuntos
Biomassa , Genoma Fúngico , Lignina/metabolismo , Ustilago/enzimologia , Análise por Conglomerados , Regulação Enzimológica da Expressão Gênica , Glicosídeo Hidrolases/metabolismo , Hidrólise , Oxirredutases/metabolismo , Proteoma/análise , Trichoderma/enzimologia , Ustilago/genética
6.
Appl Environ Microbiol ; 78(18): 6483-90, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22773628

RESUMO

In this study, natural fungal diversity in wood-decaying species was explored for biomass deconstruction. In 2007 and 2008, fungal isolates were collected in temperate forests mainly from metropolitan France and in tropical forests mainly from French Guiana. We recovered and identified 74 monomorph cultures using morphological and molecular identification tools. Following production of fungal secretomes under inductive conditions, we evaluated the capacity of these fungal strains to potentiate a commercial Trichoderma reesei cellulase cocktail for the release of soluble sugars from biomass. The secretome of 19 isolates led to an improvement in biomass conversion of at least 23%. Of the isolates, the Trametes gibbosa BRFM 952 (Banque de Ressources Fongiques de Marseille) secretome performed best, with 60% improved conversion, a feature that was not universal to the Trametes and related genera. Enzymatic characterization of the T. gibbosa BRFM 952 secretome revealed an unexpected high activity on crystalline cellulose, higher than that of the T. reesei cellulase cocktail. This report highlights the interest in a systematic high-throughput assessment of collected fungal biodiversity to improve the enzymatic conversion of lignocellulosic biomass. It enabled the unbiased identification of new fungal strains issued from biodiversity with high biotechnological potential.


Assuntos
Biodiversidade , Biomassa , Celulases/isolamento & purificação , Fungos/classificação , Fungos/enzimologia , Árvores/microbiologia , Madeira/metabolismo , Celulases/genética , Celulases/metabolismo , DNA Fúngico/química , DNA Fúngico/genética , França , Guiana Francesa , Fungos/genética , Fungos/isolamento & purificação , Glucose/metabolismo , Dados de Sequência Molecular , Análise de Sequência de DNA , Clima Tropical
7.
Appl Environ Microbiol ; 77(1): 237-46, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21037302

RESUMO

To improve the enzymatic hydrolysis (saccharification) of lignocellulosic biomass by Trichoderma reesei, a set of genes encoding putative polysaccharide-degrading enzymes were selected from the coprophilic fungus Podospora anserina using comparative genomics. Five hemicellulase-encoding genes were successfully cloned and expressed as secreted functional proteins in the yeast Pichia pastoris. These novel fungal CAZymes belonging to different glycoside hydrolase families (PaMan5A and PaMan26A mannanases, PaXyn11A xylanase, and PaAbf51A and PaAbf62A arabinofuranosidases) were able to break down their predicted cognate substrates. Although PaMan5A and PaMan26A displayed similar specificities toward a range of mannan substrates, they differed in their end products, suggesting differences in substrate binding. The N-terminal CBM35 module of PaMan26A displayed dual binding specificity toward xylan and mannan. PaXyn11A harboring a C-terminal CBM1 module efficiently degraded wheat arabinoxylan, releasing mainly xylobiose as end product. PaAbf51A and PaAbf62A arabinose-debranching enzymes exhibited differences in activity toward arabinose-containing substrates. Further investigation of the contribution made by each P. anserina auxiliary enzyme to the saccharification of wheat straw and spruce demonstrated that the endo-acting hemicellulases (PaXyn11A, PaMan5A, and PaMan26A) individually supplemented the secretome of the industrial T. reesei CL847 strain. The most striking effect was obtained with PaMan5A that improved the release of total sugars by 28% and of glucose by 18%, using spruce as lignocellulosic substrate.


Assuntos
Biomassa , Glicosídeo Hidrolases/metabolismo , Lignina/metabolismo , Podospora/enzimologia , Trichoderma/metabolismo , Clonagem Molecular , Expressão Gênica , Glicosídeo Hidrolases/genética , Hidrólise , Dados de Sequência Molecular , Pichia/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Triticum
8.
Microb Cell Fact ; 10: 103, 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-22145993

RESUMO

BACKGROUND: The gene encoding an atypical multi-modular glycoside hydrolase family 45 endoglucanase bearing five different family 1 carbohydrate binding modules (CBM1), designated PpCel45A, was identified in the Pichia pastoris GS115 genome. RESULTS: PpCel45A (full-length open reading frame), and three derived constructs comprising (i) the catalytic module with its proximal CBM1, (ii) the catalytic module only, and (iii) the five CBM1 modules without catalytic module, were successfully expressed to high yields (up to 2 grams per litre of culture) in P. pastoris X33. Although the constructs containing the catalytic module displayed similar activities towards a range of glucans, comparison of their biochemical characteristics revealed striking differences. We observed a high thermostability of PpCel45A (Half life time of 6 h at 80°C), which decreased with the removal of CBMs and glycosylated linkers. However, both binding to crystalline cellulose and hydrolysis of crystalline cellulose and cellohexaose were substantially boosted by the presence of one CBM rather than five. CONCLUSIONS: The present study has revealed the specific features of the first characterized endo ß-1,4 glucanase from yeast, whose thermostability is promising for biotechnological applications related to the saccharification of lignocellulosic biomass such as consolidated bioprocessing.


Assuntos
Proteínas Fúngicas/química , Glicosídeo Hidrolases/química , Pichia/enzimologia , Sequência de Aminoácidos , Estabilidade Enzimática , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/isolamento & purificação , Glicosídeo Hidrolases/metabolismo , Dados de Sequência Molecular , Filogenia , Pichia/química , Pichia/classificação , Pichia/genética , Estrutura Terciária de Proteína , Alinhamento de Sequência
9.
Appl Microbiol Biotechnol ; 90(1): 97-105, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21210103

RESUMO

The Pycnoporus fungi are white-rot basidiomycetes listed as food- and cosmetic-grade microorganisms. Three high redox potential laccases from Pycnoporus coccineus and Pycnoporus sanguineus were tested and compared, with the commercial Suberase® as reference, for their ability to synthesise natural active oligomers from rutin (quercetin-3-rutinoside, one of the best-known naturally occurring flavonoid glycosides). The aim of this work was to develop a process with technical parameters (solvent, temperature, reaction time and raw materials) that were easy to scale up for industrial production and compatible with cosmetic and pharmaceutical formulation guidelines. The aqueous mixture of glycerol/ethanol/buffer described in this study met this requirement and allowed the solubilisation of rutin and its oxidative bioconversion into oligomers. The four flavonoid oligomer mixtures synthesised using laccases as catalysts were analysed by high performance liquid chromatography-diode array detection-negative electrospray ionisation-multistage mass spectrometry. Their chromatographic elution profiles were compared and 16 compounds were characterised and identified as dimers and trimers of rutin. The oligorutins were different in Suberase® and Pycnoporus laccase reaction mixtures. They were evaluated for their antioxidant, anti-inflammatory and anti-ageing activities on specific enzymatic targets such as cyclooxygenase (COX-2) and human matrix metalloproteinase 3 (MMP-3). Expressed in terms of IC(50), the flavonoid oligomers displayed a 2.5- to 3-fold higher superoxide scavenging activity than monomeric rutin. Pycnoporus laccase and Suberase® oligorutins led to an inhibition of COX-2 of about 35% and 70%, respectively, while monomeric rutin showed a near-negligible inhibition effect, less than about 10%. The best results on MMP-3 activity were obtained with rutin oligomers from P. sanguineus IMB W006-2 laccase and Suberase® with about 70-75% inhibition.


Assuntos
Proteínas Fúngicas/metabolismo , Lacase/metabolismo , Pycnoporus/metabolismo , Rutina/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Biotecnologia , Biotransformação , Ciclo-Oxigenase 2/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Metaloproteinase 3 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz , Estrutura Molecular , Pycnoporus/química , Pycnoporus/enzimologia , Rutina/química , Rutina/farmacologia
10.
Appl Microbiol Biotechnol ; 92(6): 1129-49, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22038244

RESUMO

The genus Pycnoporus forms a cosmopolitan group of four species belonging to the polyporoid white-rot fungi, the most representative group of homobasidiomycetes causing wood decay. Pycnoporus fungi are listed as food- and cosmetic-grade microorganisms and emerged in the early 1990s as a genus whose biochemistry, biodegradation and biotechnological properties have since been progressively detailed. First highlighted for their original metabolic pathways involved in the functionalization of plant cell wall aromatic compounds to yield high-value molecules, e.g. aromas and antioxidants, the Pycnoporus species were later explored for their potential to produce various enzymes of industrial interest, such as hydrolases and oxidases. However, the most noteworthy feature of the genus Pycnoporus is its ability to overproduce high redox potential laccase-a multi-copper extracellular phenoloxidase-as the predominant ligninolytic enzyme. A major potential use of the Pycnoporus fungi is thus to harness their laccases for various applications such as the bioconversion of agricultural by-products and raw plant materials into valuable products, the biopulping and biobleaching of paper pulp and the biodegradation of organopollutants, xenobiotics and industrial contaminants. All the studies performed in the last decade show the genus Pycnoporus to be a strong contender for white biotechnology. In this review, we describe the properties of Pycnoporus fungi in relation to their biotechnological applications and potential.


Assuntos
Biotecnologia , Pycnoporus/metabolismo , Biodegradação Ambiental , Biotransformação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Microbiologia Industrial , Lacase/genética , Lacase/metabolismo , Pycnoporus/enzimologia , Pycnoporus/genética
11.
Commun Biol ; 4(1): 871, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34267314

RESUMO

Fungal biotechnology is set to play a keystone role in the emerging bioeconomy, notably to address pollution issues arising from human activities. Because they preserve biological diversity, Biological Resource Centres are considered as critical infrastructures to support the development of biotechnological solutions. Here, we report the first large-scale phenotyping of more than 1,000 fungal strains with evaluation of their growth and degradation potential towards five industrial, human-designed and recalcitrant compounds, including two synthetic dyes, two lignocellulose-derived compounds and a synthetic plastic polymer. We draw a functional map over the phylogenetic diversity of Basidiomycota and Ascomycota, to guide the selection of fungal taxa to be tested for dedicated biotechnological applications. We evidence a functional diversity at all taxonomic ranks, including between strains of a same species. Beyond demonstrating the tremendous potential of filamentous fungi, our results pave the avenue for further functional exploration to solve the ever-growing issue of ecosystems pollution.


Assuntos
Biotecnologia/métodos , Corantes/metabolismo , Fungos/metabolismo , Microbiologia Industrial/métodos , Lignina/metabolismo , Plásticos/metabolismo , Ascomicetos/classificação , Ascomicetos/genética , Ascomicetos/metabolismo , Basidiomycota/classificação , Basidiomycota/genética , Basidiomycota/metabolismo , Fungos/classificação , Fungos/genética , Variação Genética , Geografia , Humanos , Fenótipo , Filogenia , Especificidade da Espécie
12.
DNA Res ; 27(2)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32531032

RESUMO

White-rot (WR) fungi are pivotal decomposers of dead organic matter in forest ecosystems and typically use a large array of hydrolytic and oxidative enzymes to deconstruct lignocellulose. However, the extent of lignin and cellulose degradation may vary between species and wood type. Here, we combined comparative genomics, transcriptomics and secretome proteomics to identify conserved enzymatic signatures at the onset of wood-decaying activity within the Basidiomycota genus Pycnoporus. We observed a strong conservation in the genome structures and the repertoires of protein-coding genes across the four Pycnoporus species described to date, despite the species having distinct geographic distributions. We further analysed the early response of P. cinnabarinus, P. coccineus and P. sanguineus to diverse (ligno)-cellulosic substrates. We identified a conserved set of enzymes mobilized by the three species for breaking down cellulose, hemicellulose and pectin. The co-occurrence in the exo-proteomes of H2O2-producing enzymes with H2O2-consuming enzymes was a common feature of the three species, although each enzymatic partner displayed independent transcriptional regulation. Finally, cellobiose dehydrogenase-coding genes were systematically co-regulated with at least one AA9 lytic polysaccharide monooxygenase gene, indicative of enzymatic synergy in vivo. This study highlights a conserved core white-rot fungal enzymatic mechanism behind the wood-decaying process.


Assuntos
Desidrogenases de Carboidrato/genética , Proteínas Fúngicas/genética , Lignina/genética , Pycnoporus/enzimologia , Desidrogenases de Carboidrato/metabolismo , Celulose/metabolismo , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Lignina/metabolismo , Filogenia , Pycnoporus/classificação , Pycnoporus/genética , Madeira/metabolismo , Madeira/microbiologia
13.
Biotechnol Biofuels ; 11: 217, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30083230

RESUMO

BACKGROUND: Lavender (Lavandula angustifolia) and lavandin (a sterile hybrid of L. angustifolia × L. latifolia) essential oils are among those most commonly used in the world for various industrial purposes, including perfumes, pharmaceuticals and cosmetics. The solid residues from aromatic plant distillation such as lavender- and lavandin-distilled straws are generally considered as wastes, and consequently either left in the fields or burnt. However, lavender- and lavandin-distilled straws are a potentially renewable plant biomass as they are cheap, non-food materials that can be used as raw feedstocks for green chemistry industry. The objective of this work was to assess different pathways of valorization of these straws as bio-based platform chemicals and fungal enzymes of interest in biorefinery. RESULTS: Sugar and lignin composition analyses and saccharification potential of the straw fractions revealed that these industrial by-products could be suitable for second-generation bioethanol prospective. The solvent extraction processes, developed specifically for these straws, released terpene derivatives (e.g. τ-cadinol, ß-caryophyllene), lactones (e.g. coumarin, herniarin) and phenolic compounds of industrial interest, including rosmarinic acid which contributed to the high antioxidant activity of the straw extracts. Lavender and lavandin straws were also suitable inducers for the secretion of a wide panel of lignocellulose-acting enzymes (cellulases, hemicellulases and oxido-reductases) from the white-rot model fungus Pycnoporus cinnabarinus. Interestingly, high amounts of laccase and several lytic polysaccharide monooxygenases were identified in the lavender and lavandin straw secretomes using proteomics. CONCLUSIONS: The present study demonstrated that the distilled straws of lavender and lavandin are lignocellulosic-rich materials that can be used as raw feedstocks for producing high-added value compounds (antioxidants, aroma) and fungal oxidative enzymes, which represent opportunities to improve the decomposition of recalcitrant lignocellulose into biofuel. Hence, the structure and the physico-chemical properties of these straws clearly open new perspectives for use in biotechnological processes involving especially filamentous fungi. These approaches represent sustainable strategies to foster the development of a local circular bioeconomy.

14.
Biotechnol Biofuels ; 11: 201, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30061923

RESUMO

BACKGROUND: Plant biomass conversion for green chemistry and bio-energy is a current challenge for a modern sustainable bioeconomy. The complex polyaromatic lignin polymers in raw biomass feedstocks (i.e., agriculture and forestry by-products) are major obstacles for biomass conversions. White-rot fungi are wood decayers able to degrade all polymers from lignocellulosic biomass including cellulose, hemicelluloses, and lignin. The white-rot fungus Polyporus brumalis efficiently breaks down lignin and is regarded as having a high potential for the initial treatment of plant biomass in its conversion to bio-energy. Here, we describe the extraordinary ability of P. brumalis for lignin degradation using its enzymatic arsenal to break down wheat straw, a lignocellulosic substrate that is considered as a biomass feedstock worldwide. RESULTS: We performed integrative multi-omics analyses by combining data from the fungal genome, transcriptomes, and secretomes. We found that the fungus possessed an unexpectedly large set of genes coding for Class II peroxidases involved in lignin degradation (19 genes) and GMC oxidoreductases/dehydrogenases involved in generating the hydrogen peroxide required for lignin peroxidase activity and promoting redox cycling of the fungal enzymes involved in oxidative cleavage of lignocellulose polymers (36 genes). The examination of interrelated multi-omics patterns revealed that eleven Class II Peroxidases were secreted by the fungus during fermentation and eight of them where tightly co-regulated with redox cycling enzymatic partners. CONCLUSION: As a peculiar feature of P. brumalis, we observed gene family extension, up-regulation and secretion of an abundant set of versatile peroxidases and manganese peroxidases, compared with other Polyporales species. The orchestrated secretion of an abundant set of these delignifying enzymes and redox cycling enzymatic partners could contribute to the delignification capabilities of the fungus. Our findings highlight the diversity of wood decay mechanisms present in Polyporales and the potentiality of further exploring this taxonomic order for enzymatic functions of biotechnological interest.

15.
Res Microbiol ; 158(5): 413-9, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17531445

RESUMO

Species of the Aspergillus niger aggregate are known to produce feruloyl esterases, enzymes involved in the degradation of cell wall polymers. However, species delineation is difficult in these fungi. We combined AFLP analysis with ITS rDNA and beta-tubulin sequencing to characterize the isolates of this aggregate in terms of feruloyl esterase production. A preliminary re-examination of isolates based on comparison of ITS rDNA and beta-tubulin sequences with those of typical taxa deposited in international collections led us to re-identify the isolates as members of the species A. niger, A. foetidus and A. tubingensis. Molecular clustering based on beta-tubulin data and AFLP analysis showed that the strains of A. niger formed a homogenous phylogenetic group distinguished by either zero or type A feruloyl esterase activity, while strains A. foetidus and A. tubingensis exhibited type B feruloyl esterase activity when grown on sugar beet pulp.


Assuntos
Aspergillus niger/enzimologia , Hidrolases de Éster Carboxílico/metabolismo , Proteínas Fúngicas/metabolismo , Filogenia , Aspergillus niger/classificação , Aspergillus niger/genética , DNA Fúngico/química , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Dados de Sequência Molecular , Polimorfismo de Fragmento de Restrição , Análise de Sequência de DNA , Tubulina (Proteína)/genética
17.
BMC Evol Biol ; 6: 92, 2006 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-17092334

RESUMO

BACKGROUND: There have been many claims of adaptive molecular evolution, but what role does positive selection play in functional divergence? The aim of this study was to test the relationship between evolutionary and functional shifts with special emphasis on the role of the environment. For this purpose, we studied the fungal lipase/feruloyl esterase A family, whose functional diversification makes it a very promising candidate. RESULTS: The results suggested functional shift following a duplication event where neofunctionalisation of feruloyl esterase A had occurred with conservation of the ancestral lipase function. Evolutionary shift was detected using the branch-site model for testing positive selection on individual codons along specific lineages. Positively selected amino acids were detected. Furthermore, biological data obtained from site-directed mutagenesis experiments clearly demonstrated that certain amino acids under positive selection were involved in the functional shift. We reassessed evolutionary history in terms of environmental response, and hypothesized that environmental changes such as colonisation by terrestrial plants might have driven adaptation by functional diversification in Euascomycetes (Aspergilli), thus conferring a selective advantage on this group. CONCLUSION: The results reported here illustrate a rare example of connection between fundamental events in molecular evolution. We demonstrated an unequivocal connection between evolutionary and functional shifts, which led us to conclude that these events were probably linked to environmental change.


Assuntos
Aspergillus/enzimologia , Hidrolases de Éster Carboxílico/química , Evolução Molecular , Lipase/química , Aminoácidos/química , Hidrolases de Éster Carboxílico/genética , Códon , Lipase/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Filogenia , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas/química , Fatores de Tempo
18.
Carbohydr Res ; 341(11): 1820-7, 2006 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-16697997

RESUMO

Agro-industrial by-products are a potential source of added-value phenolic acids with promising applications in the food and pharmaceutical industries. Here two purified feruloyl esterases from Aspergillus niger, FAEA and FAEB were tested for their ability to release phenolic acids such as caffeic acid, p-coumaric acid and ferulic acid from coffee pulp, apple marc and wheat straw. Their hydrolysis activity was evaluated and compared with their action on maize bran and sugar beet pulp. The specificity of both enzymes against natural and synthetic substrates was evaluated; particular attention was paid to quinic esters and lignin monomers. The efficiency of both enzymes on model substrates was studied. We show the ability of these enzymes to hydrolyze quinic esters and ester linkages between phenolic acids and lignin monomer.


Assuntos
Agricultura/métodos , Agroquímicos/análise , Hidrolases de Éster Carboxílico/metabolismo , Hidroxibenzoatos/metabolismo , Resíduos Industriais/análise , Aspergillus niger/enzimologia , Biodegradação Ambiental , Ácidos Cafeicos/química , Ácidos Cafeicos/metabolismo , Café/química , Ácidos Cumáricos/química , Ácidos Cumáricos/metabolismo , Proteínas Fúngicas/metabolismo , Hidrólise , Hidroxibenzoatos/química , Isoenzimas/metabolismo , Malus/química , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Plantas Comestíveis/química , Especificidade por Substrato , Zea mays/química
19.
J Biotechnol ; 115(1): 47-56, 2005 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-15607224

RESUMO

Among 15 Aspergillus strains, Aspergillus niger BRFM 131 was selected for its high chlorogenic acid hydrolase activity. The enzyme was purified and characterized with respect to its physico-chemical and kinetic properties. Four chromatographic steps were necessary to purify the protein to homogeneity with a recovery of 2%. Km of the chlorogenic acid hydrolase was estimated to be 10 microM against chlorogenic acid as substrate. Under native conditions, the protein presented a molecular mass of 170 kDa, and SDS-PAGE analysis suggested the presence of two identical 80 kDa subunits. Isoelectric point was 6.0; pH optimum for activity was determined to be 6.0 and temperature optima to be 55 degrees C. The N-terminal sequence did not present any homology with other cinnamoyl ester hydrolases previously described suggesting the purification of a new protein. The chlorogenic acid hydrolase was used successfully for the production of caffeic acid, which possesses strong antioxidant properties, from natural substrates specially rich in chlorogenic acid like apple marc and coffee pulp.


Assuntos
Aspergillus niger/classificação , Aspergillus niger/enzimologia , Ácidos Cafeicos/síntese química , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/isolamento & purificação , Ácido Clorogênico/química , Catálise , Ativação Enzimática , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Peso Molecular , Especificidade da Espécie , Especificidade por Substrato , Temperatura
20.
Appl Biochem Biotechnol ; 102-103(1-6): 141-53, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12396118

RESUMO

A new process involving the filamentous fungi Aspergillus niger and Pycnoporus cinnabarinus has been designed for the release of ferulic acid by enzymic degradation of a cheap and natural agricultural byproduct (autoclaved maize bran) and its biotransformation into vanillic acid and/or vanillin with a limited number of steps. On the one hand, the potentialities of A. niger I-1472 to produce high levels of polysaccharide-degrading enzymes including feruloyl esterases and to transform ferulic acid into vanillic acid were successfully combined for the release of free ferulic acid from autoclaved maize bran. Then vanillic acid was recovered and efficiently transformed into vanillin by P. cinnabarinus MUCL39533, since 767 mg/L of biotechnologic vanillin could be produced in the presence of cellobiose and XAD-2 resin. On the other hand, 3-d-old high-density cultures of P. cinnabarinus MUCL39533 could be fed with the autoclaved fraction of maize bran as a ferulic acid source and A. niger I-1472 culture filtrate as an extracellular enzyme source. Under these conditions, P. cinnabarinus MUCL39533 was shown to directly biotransform free ferulic acid released from the autoclaved maize bran by A. niger I-1472 enzymes into 584 mg/L of vanillin. These processes, involving physical enzymic, and fungal treatments, permitted us to produce crystallin vanillin from autoclaved maize bran without any purification step.


Assuntos
Aspergillus niger/metabolismo , Basidiomycota/metabolismo , Benzaldeídos/metabolismo , Biotecnologia/métodos , Zea mays/metabolismo , Benzaldeídos/química , Ácidos Cumáricos/metabolismo , Cristalização , Hidrolases/metabolismo , Ácido Vanílico/metabolismo , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA