Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 24(9): 1473-1486, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37580603

RESUMO

Omnivorous animals, including mice and humans, tend to prefer energy-dense nutrients rich in fat over plant-based diets, especially for short periods of time, but the health consequences of this short-term consumption of energy-dense nutrients are unclear. Here, we show that short-term reiterative switching to 'feast diets', mimicking our social eating behavior, breaches the potential buffering effect of the intestinal microbiota and reorganizes the immunological architecture of mucosa-associated lymphoid tissues. The first dietary switch was sufficient to induce transient mucosal immune depression and suppress systemic immunity, leading to higher susceptibility to Salmonella enterica serovar Typhimurium and Listeria monocytogenes infections. The ability to respond to antigenic challenges with a model antigen was also impaired. These observations could be explained by a reduction of CD4+ T cell metabolic fitness and cytokine production due to impaired mTOR activity in response to reduced microbial provision of fiber metabolites. Reintroducing dietary fiber rewired T cell metabolism and restored mucosal and systemic CD4+ T cell functions and immunity. Finally, dietary intervention with human volunteers confirmed the effect of short-term dietary switches on human CD4+ T cell functionality. Therefore, short-term nutritional changes cause a transient depression of mucosal and systemic immunity, creating a window of opportunity for pathogenic infection.


Assuntos
Mucosa , Salmonella typhimurium , Humanos , Camundongos , Animais , Linfócitos T , Imunidade nas Mucosas
2.
Nature ; 615(7950): 168-174, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36813961

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is expected to be the second most deadly cancer by 2040, owing to the high incidence of metastatic disease and limited responses to treatment1,2. Less than half of all patients respond to the primary treatment for PDAC, chemotherapy3,4, and genetic alterations alone cannot explain this5. Diet is an environmental factor that can influence the response to therapies, but its role in PDAC is unclear. Here, using shotgun metagenomic sequencing and metabolomic screening, we show that the microbiota-derived tryptophan metabolite indole-3-acetic acid (3-IAA) is enriched in patients who respond to treatment. Faecal microbiota transplantation, short-term dietary manipulation of tryptophan and oral 3-IAA administration increase the efficacy of chemotherapy in humanized gnotobiotic mouse models of PDAC. Using a combination of loss- and gain-of-function experiments, we show that the efficacy of 3-IAA and chemotherapy is licensed by neutrophil-derived myeloperoxidase. Myeloperoxidase oxidizes 3-IAA, which in combination with chemotherapy induces a downregulation of the reactive oxygen species (ROS)-degrading enzymes glutathione peroxidase 3 and glutathione peroxidase 7. All of this results in the accumulation of ROS and the downregulation of autophagy in cancer cells, which compromises their metabolic fitness and, ultimately, their proliferation. In humans, we observed a significant correlation between the levels of 3-IAA and the efficacy of therapy in two independent PDAC cohorts. In summary, we identify a microbiota-derived metabolite that has clinical implications in the treatment of PDAC, and provide a motivation for considering nutritional interventions during the treatment of patients with cancer.


Assuntos
Carcinoma Ductal Pancreático , Microbiota , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Carcinoma Ductal Pancreático/dietoterapia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/microbiologia , Glutationa Peroxidase/metabolismo , Neoplasias Pancreáticas/dietoterapia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/microbiologia , Peroxidase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Triptofano/metabolismo , Triptofano/farmacologia , Triptofano/uso terapêutico , Neutrófilos/enzimologia , Autofagia , Metagenoma , Metabolômica , Transplante de Microbiota Fecal , Ácidos Indolacéticos/farmacologia , Ácidos Indolacéticos/uso terapêutico , Modelos Animais de Doenças , Vida Livre de Germes , Neoplasias Pancreáticas
3.
EMBO J ; 40(23): e108287, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34676563

RESUMO

Prevotella copri is a prevalent inhabitant of the human gut and has been associated with plant-rich diet consumption and diverse health states. The underlying genetic basis of these associations remains enigmatic due to the lack of genetic tools. Here, we developed a novel versatile genetic toolbox for rapid and efficient genetic insertion and allelic exchange applicable to P. copri strains from multiple clades. Enabled by the genetic platform, we systematically investigated the specificity of polysaccharide utilization loci (PULs) and identified four highly conserved PULs for utilizing arabinan, pectic galactan, arabinoxylan, and inulin, respectively. Further genetic and functional analysis of arabinan utilization systems illustrate that P. copri has evolved two distinct types of arabinan-processing PULs (PULAra ) and that the type-II PULAra is significantly enriched in individuals consuming a vegan diet compared to other diets. In summary, this genetic toolbox will enable functional genetic studies for P. copri in future.


Assuntos
Dieta Vegetariana , Microbioma Gastrointestinal , Loci Gênicos , Genoma Bacteriano , Polissacarídeos/metabolismo , Prevotella/genética , Prevotella/metabolismo , Fezes/microbiologia , Humanos , Prevotella/classificação , Prevotella/isolamento & purificação
4.
Bioinformatics ; 35(14): 2498-2500, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30500871

RESUMO

SUMMARY: Identifying distinctive taxa for micro-biome-related diseases is considered key to the establishment of diagnosis and therapy options in precision medicine and imposes high demands on the accuracy of micro-biome analysis techniques. We propose an alignment- and reference- free subsequence based 16S rRNA data analysis, as a new paradigm for micro-biome phenotype and biomarker detection. Our method, called DiTaxa, substitutes standard operational taxonomic unit (OTU)-clustering by segmenting 16S rRNA reads into the most frequent variable-length subsequences. We compared the performance of DiTaxa to the state-of-the-art methods in phenotype and biomarker detection, using human-associated 16S rRNA samples for periodontal disease, rheumatoid arthritis and inflammatory bowel diseases, as well as a synthetic benchmark dataset. DiTaxa performed competitively to the k-mer based state-of-the-art approach in phenotype prediction while outperforming the OTU-based state-of-the-art approach in finding biomarkers in both resolution and coverage evaluated over known links from literature and synthetic benchmark datasets. AVAILABILITY AND IMPLEMENTATION: DiTaxa is available under the Apache 2 license at http://llp.berkeley.edu/ditaxa. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , RNA Ribossômico 16S/genética , Biomarcadores , Humanos , Nucleotídeos , Fenótipo , Análise de Sequência de DNA , Software
6.
Nat Microbiol ; 9(7): 1792-1811, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38862602

RESUMO

The Klebsiella oxytoca species complex is part of the human microbiome, especially during infancy and childhood. K. oxytoca species complex strains can produce enterotoxins, namely, tilimycin and tilivalline, while also contributing to colonization resistance (CR). The relationship between these seemingly contradictory roles is not well understood. Here, by coupling ex vivo assays with CRISPR-mutagenesis and various mouse models, we show that K. oxytoca provides CR against Salmonella Typhimurium. In vitro, the antimicrobial activity against various Salmonella strains depended on tilimycin production and was induced by various simple carbohydrates. In vivo, CR against Salmonella depended on toxin production in germ-free mice, while it was largely toxin-independent in mice with residual microbiota. This was linked to the relative levels of toxin-inducing carbohydrates in vivo. Finally, dulcitol utilization was essential for toxin-independent CR in gnotobiotic mice. Together, this demonstrates that nutrient availability is key to both toxin-dependent and substrate-driven competition between K. oxytoca and Salmonella.


Assuntos
Klebsiella oxytoca , Infecções por Salmonella , Salmonella typhimurium , Klebsiella oxytoca/genética , Klebsiella oxytoca/metabolismo , Animais , Camundongos , Infecções por Salmonella/microbiologia , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/efeitos dos fármacos , Humanos , Modelos Animais de Doenças , Enterotoxinas/metabolismo , Enterotoxinas/genética , Feminino , Camundongos Endogâmicos C57BL , Infecções por Klebsiella/microbiologia , Microbiota , Microbioma Gastrointestinal , Antibiose , Benzodiazepinonas
7.
Cell Host Microbe ; 31(5): 734-750.e8, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37098342

RESUMO

Clostridioides difficile infections (CDIs) remain a healthcare problem due to high rates of relapsing/recurrent CDIs (rCDIs). Breakdown of colonization resistance promoted by broad-spectrum antibiotics and the persistence of spores contribute to rCDI. Here, we demonstrate antimicrobial activity of the natural product class of chlorotonils against C. difficile. In contrast to vancomycin, chlorotonil A (ChA) efficiently inhibits disease and prevents rCDI in mice. Notably, ChA affects the murine and porcine microbiota to a lesser extent than vancomycin, largely preserving microbiota composition and minimally impacting the intestinal metabolome. Correspondingly, ChA treatment does not break colonization resistance against C. difficile and is linked to faster recovery of the microbiota after CDI. Additionally, ChA accumulates in the spore and inhibits outgrowth of C. difficile spores, thus potentially contributing to lower rates of rCDI. We conclude that chlorotonils have unique antimicrobial properties targeting critical steps in the infection cycle of C. difficile.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Animais , Camundongos , Suínos , Vancomicina/farmacologia , Vancomicina/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Clostridium/tratamento farmacológico , Infecções por Clostridium/prevenção & controle
8.
Sci Immunol ; 8(87): eadf7702, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37774008

RESUMO

Allergic disorders are caused by a combination of hereditary and environmental factors. The hygiene hypothesis postulates that early-life microbial exposures impede the development of subsequent allergic disease. Recently developed "wildling" mice are genetically identical to standard laboratory specific pathogen-free (SPF) mice but are housed under seminatural conditions and have rich microbial exposures from birth. Thus, by comparing conventional SPF mice with wildlings, we can uncouple the impact of lifelong microbial exposures from genetic factors on the allergic immune response. We found that wildlings developed larger populations of antigen-experienced T cells than conventional SPF mice, which included interleukin-10-producing CD4 T cells specific for commensal Lactobacilli strains and allergy-promoting T helper 2 (TH2) cells. In models of airway exposure to house dust mite (HDM), recombinant interleukin-33, or Alternaria alternata, wildlings developed strong allergic inflammation, characterized by eosinophil recruitment, goblet cell metaplasia, and antigen-specific immunoglobulin G1 (IgG1) and IgE responses. Wildlings developed robust de novo TH2 cell responses to incoming allergens, whereas preexisting TH2 cells could also be recruited into the allergic immune response in a cytokine-driven and TCR-independent fashion. Thus, wildling mice, which experience diverse and lifelong microbial exposures, were not protected from developing pathological allergic immune responses. Instead, wildlings mounted robust allergic responses to incoming allergens, shedding new light on the hygiene hypothesis.


Assuntos
Hipersensibilidade , Células Th2 , Camundongos , Animais , Citocinas , Alérgenos , Imunidade
9.
Cell Rep ; 42(5): 112464, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37141097

RESUMO

Mouse models are key tools for investigating host-microbiome interactions. However, shotgun metagenomics can only profile a limited fraction of the mouse gut microbiome. Here, we employ a metagenomic profiling method, MetaPhlAn 4, which exploits a large catalog of metagenome-assembled genomes (including 22,718 metagenome-assembled genomes from mice) to improve the profiling of the mouse gut microbiome. We combine 622 samples from eight public datasets and an additional cohort of 97 mouse microbiomes, and we assess the potential of MetaPhlAn 4 to better identify diet-related changes in the host microbiome using a meta-analysis approach. We find multiple, strong, and reproducible diet-related microbial biomarkers, largely increasing those identifiable by other available methods relying only on reference information. The strongest drivers of the diet-induced changes are uncharacterized and previously undetected taxa, confirming the importance of adopting metagenomic methods integrating metagenomic assemblies for comprehensive profiling.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Camundongos , Microbiota/genética , Metagenoma , Dieta , Metagenômica/métodos
10.
Commun Biol ; 4(1): 47, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420317

RESUMO

The occurrence and spread of multidrug-resistant pathogens, especially bacteria from the ESKAPE panel, increases the risk to succumb to untreatable infections. We developed a novel antimicrobial peptide, Pam-3, with antibacterial and antibiofilm properties to counter this threat. The peptide is based on an eight-amino acid carboxyl-terminal fragment of human ß-defensin 1. Pam-3 exhibited prominent antimicrobial activity against multidrug-resistant ESKAPE pathogens and additionally eradicated already established biofilms in vitro, primarily by disrupting membrane integrity of its target cell. Importantly, prolonged exposure did not result in drug-resistance to Pam-3. In mouse models, Pam-3 selectively reduced acute intestinal Salmonella and established Citrobacter infections, without compromising the core microbiota, hence displaying an added benefit to traditional broad-spectrum antibiotics. In conclusion, our data support the development of defensin-derived antimicrobial agents as a novel approach to fight multidrug-resistant bacteria, where Pam-3 appears as a particularly promising microbiota-preserving candidate.


Assuntos
Infecções por Enterobacteriaceae/tratamento farmacológico , Gastroenteropatias/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Salmonelose Animal/tratamento farmacológico , Animais , Biofilmes/efeitos dos fármacos , Modelos Animais de Doenças , Farmacorresistência Bacteriana Múltipla , Feminino , Masculino , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana
11.
Mucosal Immunol ; 14(1): 113-124, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32433514

RESUMO

Diverse microbial signatures within the intestinal microbiota have been associated with intestinal and systemic inflammatory diseases, but whether these candidate microbes actively modulate host phenotypes or passively expand within the altered microbial ecosystem is frequently not known. Here we demonstrate that colonization of mice with a member of the genus Prevotella, which has been previously associated to colitis in mice, exacerbates intestinal inflammation. Our analysis revealed that Prevotella intestinalis alters composition and function of the ecosystem resulting in a reduction of short-chain fatty acids, specifically acetate, and consequently a decrease in intestinal IL-18 levels during steady state. Supplementation of IL-18 to Prevotella-colonized mice was sufficient to reduce intestinal inflammation. Hence, we conclude that intestinal Prevotella colonization results in metabolic changes in the microbiota, which reduce IL-18 production and consequently exacerbate intestinal inflammation, and potential systemic autoimmunity.


Assuntos
Infecções por Bacteroidaceae/imunologia , Infecções por Bacteroidaceae/microbiologia , Microbioma Gastrointestinal/imunologia , Interações Hospedeiro-Patógeno/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Prevotella/imunologia , Imunidade Adaptativa , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Mediadores da Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Metagenoma , Metagenômica/métodos , Camundongos , Camundongos Knockout , Mucosite/etiologia , Mucosite/metabolismo , Mucosite/patologia
12.
Cell Host Microbe ; 29(11): 1663-1679.e7, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34610293

RESUMO

Gut colonization with multidrug-resistant (MDR) bacteria enhances the risk of bloodstream infections in susceptible individuals. We demonstrate highly variable degrees of ex vivo colonization resistance against a carbapenem-resistant Klebsiella pneumoniae strain in human feces samples and subsequently isolate diverse K. oxytoca strains from protected donors. Several of these K. oxytoca strains reduce gut colonization of MDR K. pneumoniae strains in antibiotic-treated and gnotobiotic mouse models. Comparative analysis of K. oxytoca strains coupled with CRISPR-Cas9-mediated deletion of casA, a protein essential for utilization of selected beta-glucosides, identified competition for specific carbohydrates as key in promoting colonization resistance. In addition to direct competition between K. oxytoca and K. pneumoniae, cooperation with additional commensals is required to reestablish full colonization resistance and gut decolonization. Finally, humanized microbiota mice generated from K. pneumoniae-susceptible donors are protected by K. oxytoca administration, demonstrating the potential of commensal K. oxytoca strains as next-generation probiotics.


Assuntos
Metabolismo dos Carboidratos , Fezes/microbiologia , Trato Gastrointestinal/microbiologia , Klebsiella oxytoca/fisiologia , Klebsiella pneumoniae/crescimento & desenvolvimento , Interações Microbianas , Imunidade Adaptativa , Adulto , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Criança , Farmacorresistência Bacteriana Múltipla , Microbioma Gastrointestinal , Vida Livre de Germes , Glucosídeos/metabolismo , Humanos , Infecções por Klebsiella/imunologia , Infecções por Klebsiella/microbiologia , Klebsiella oxytoca/genética , Klebsiella oxytoca/isolamento & purificação , Klebsiella pneumoniae/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL
13.
Cell Rep ; 30(9): 2909-2922.e6, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32130896

RESUMO

The complexity of host-associated microbial ecosystems requires host-specific reference catalogs to survey the functions and diversity of these communities. We generate a comprehensive resource, the integrated mouse gut metagenome catalog (iMGMC), comprising 4.6 million unique genes and 660 metagenome-assembled genomes (MAGs), many (485 MAGs, 73%) of which are linked to reconstructed full-length 16S rRNA gene sequences. iMGMC enables unprecedented coverage and taxonomic resolution of the mouse gut microbiota; i.e., more than 92% of MAGs lack species-level representatives in public repositories (<95% ANI match). The integration of MAGs and 16S rRNA gene data allows more accurate prediction of functional profiles of communities than predictions based on 16S rRNA amplicons alone. Accompanying iMGMC, we provide a set of MAGs representing 1,296 gut bacteria obtained through complementary assembly strategies. We envision that integrated resources such as iMGMC, together with MAG collections, will enhance the resolution of numerous existing and future sequencing-based studies.


Assuntos
Microbioma Gastrointestinal/genética , Metagenoma/genética , Animais , Sequência de Bases , Biodiversidade , Feminino , Masculino , Camundongos Endogâmicos C57BL , Modelos Genéticos , Filogenia , RNA Ribossômico 16S/genética
14.
Nat Commun ; 11(1): 6389, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33319778

RESUMO

Our knowledge about the gut microbiota of pigs is still scarce, despite the importance of these animals for biomedical research and agriculture. Here, we present a collection of cultured bacteria from the pig gut, including 110 species across 40 families and nine phyla. We provide taxonomic descriptions for 22 novel species and 16 genera. Meta-analysis of 16S rRNA amplicon sequence data and metagenome-assembled genomes reveal prevalent and pig-specific species within Lactobacillus, Streptococcus, Clostridium, Desulfovibrio, Enterococcus, Fusobacterium, and several new genera described in this study. Potentially interesting functions discovered in these organisms include a fucosyltransferase encoded in the genome of the novel species Clostridium porci, and prevalent gene clusters for biosynthesis of sactipeptide-like peptides. Many strains deconjugate primary bile acids in in vitro assays, and a Clostridium scindens strain produces secondary bile acids via dehydroxylation. In addition, cells of the novel species Bullifex porci are coccoidal or spherical under the culture conditions tested, in contrast with the usual helical shape of other members of the family Spirochaetaceae. The strain collection, called 'Pig intestinal bacterial collection' (PiBAC), is publicly available at www.dsmz.de/pibac and opens new avenues for functional studies of the pig gut microbiota.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Intestinos/microbiologia , Filogenia , Suínos/microbiologia , Idoso de 80 Anos ou mais , Animais , Bactérias/genética , Bactérias/metabolismo , Ácidos e Sais Biliares/metabolismo , Biodiversidade , Clostridium/classificação , Clostridium/genética , Clostridium/isolamento & purificação , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Genes Bacterianos/genética , Especificidade de Hospedeiro , Humanos , Masculino , Metagenoma , Família Multigênica , RNA Ribossômico 16S
15.
Microbiome ; 7(1): 17, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30736849

RESUMO

BACKGROUND: Shotgun metagenome data sets of microbial communities are highly diverse, not only due to the natural variation of the underlying biological systems, but also due to differences in laboratory protocols, replicate numbers, and sequencing technologies. Accordingly, to effectively assess the performance of metagenomic analysis software, a wide range of benchmark data sets are required. RESULTS: We describe the CAMISIM microbial community and metagenome simulator. The software can model different microbial abundance profiles, multi-sample time series, and differential abundance studies, includes real and simulated strain-level diversity, and generates second- and third-generation sequencing data from taxonomic profiles or de novo. Gold standards are created for sequence assembly, genome binning, taxonomic binning, and taxonomic profiling. CAMSIM generated the benchmark data sets of the first CAMI challenge. For two simulated multi-sample data sets of the human and mouse gut microbiomes, we observed high functional congruence to the real data. As further applications, we investigated the effect of varying evolutionary genome divergence, sequencing depth, and read error profiles on two popular metagenome assemblers, MEGAHIT, and metaSPAdes, on several thousand small data sets generated with CAMISIM. CONCLUSIONS: CAMISIM can simulate a wide variety of microbial communities and metagenome data sets together with standards of truth for method evaluation. All data sets and the software are freely available at https://github.com/CAMI-challenge/CAMISIM.


Assuntos
Simulação por Computador , Microbioma Gastrointestinal/genética , Metagenoma/genética , Metagenômica/métodos , Algoritmos , Animais , Humanos , Camundongos , Modelos Biológicos , Análise de Sequência de DNA/métodos , Software
16.
Microbiome ; 7(1): 28, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30782206

RESUMO

BACKGROUND: Bacteria within family S24-7 (phylum Bacteroidetes) are dominant in the mouse gut microbiota and detected in the intestine of other animals. Because they had not been cultured until recently and the family classification is still ambiguous, interaction with their host was difficult to study and confusion still exists regarding sequence data annotation. METHODS: We investigated family S24-7 by combining data from large-scale 16S rRNA gene analysis and from functional and taxonomic studies of metagenomic and cultured species. RESULTS: A total of 685 species was inferred by full-length 16S rRNA gene sequence clustering. While many species could not be assigned ecological habitats (93,045 samples analyzed), the mouse was the most commonly identified host (average of 20% relative abundance and nine co-occurring species). Shotgun metagenomics allowed reconstruction of 59 molecular species, of which 34 were representative of the 16S rRNA gene-derived species clusters. In addition, cultivation efforts allowed isolating five strains representing three species, including two novel taxa. Genome analysis revealed that S24-7 spp. are functionally distinct from neighboring families and versatile with respect to complex carbohydrate degradation. CONCLUSIONS: We provide novel data on the diversity, ecology, and description of bacterial family S24-7, for which the name Muribaculaceae is proposed.


Assuntos
Técnicas Bacteriológicas/métodos , Bacteroides/classificação , Metagenômica/métodos , RNA Ribossômico 16S/genética , Animais , Bacteroides/genética , Bacteroides/crescimento & desenvolvimento , Biodiversidade , DNA Bacteriano/genética , DNA Ribossômico/genética , Microbioma Gastrointestinal , Camundongos , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA