Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Appl Clin Med Phys ; 24(5): e13916, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36763085

RESUMO

PURPOSE: Adaptive radiation therapy (ART) on the integrated Elekta Unity magnetic resonance (MR)-linac requires routine quality assurance to verify delivery accuracy and system data transfer. In this work, our objective was to develop and validate a novel automated end-to-end test suite that verifies data transfer between multiple software platforms and quantifies the performance of multiple machine subcomponents critical to the ART process. METHODS: We designed and implemented a software tool to quantify the MR and megavoltage (MV) isocenter coincidence, treatment couch positioning consistency, isocenter shift accuracy for the adapted plan as well as the MLC and jaw position accuracy following the beam aperture adaptation. Our tool employs a reference treatment plan with a simulated isocenter shift generated on an MR image of a readily available phantom with MR and MV visible fiducials. Execution of the test occurs within the standard adapt-to-position (ATP) clinical workflow with MV images collected of the delivered treatment fields. Using descriptive statistics, we quantified uncertainty in couch positioning, isocentre shift as well as the jaw and MLC positions of the adapted fields. We also executed sensitivity measurements to evaluate the detection algorithm's performance. RESULTS: We report the results of 301 daily testing instances. We demonstrated consistent tracking of the MR-to-MV alignment with respect to the established value and to detect small changes on the order of 0.2 mm following machine service events. We found couch position consistency relative to the test baseline value was within 95% CI [-0.31, 0.26 mm]. For phantom shifts that form the basis for the plan adaptation, we found agreement between MV-image-detected phantom shift and online image registration, within ± 1.5 mm in all directions with a 95% CI difference of [-1.29, 0.79 mm]. For beam aperture adaptation accuracy, we found differences between the planned and detected jaw positions had a mean value of 0.27 mm and 95% CI of [-0.29, 0.82 mm] and -0.17 mm and 95% CI of [-0.37, 0.05 mm] for the MLC positions. Automated fiducial detected accuracy was within 0.08 ± 0.20 mm of manual localization. Introduced jaw and MLC position errors (1-10 mm) were detected within 0.55 mm (within 1 mm for 15/256 instances for the jaws). Phantom shifts (1.3 or 5 mm in each cardinal direction) from a reference position were detected within 0.26 mm. CONCLUSIONS: We have demonstrated the accuracy and sensitivity of a daily end-to-end test suite capable of detecting errors in multiple machine subcomponents including system data transfer. Our test suite evaluates the entire treatment workflow and has captured system communication issues prior to patient treatment. With automated processing and the use of a standard vendor-provided phantom, it is possible to expand to other Unity sites.


Assuntos
Imageamento por Ressonância Magnética , Aceleradores de Partículas , Humanos , Imageamento por Ressonância Magnética/métodos , Software , Controle de Qualidade , Imagens de Fantasmas , Espectroscopia de Ressonância Magnética , Planejamento da Radioterapia Assistida por Computador/métodos
2.
Acta Oncol ; 60(2): 260-266, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33170058

RESUMO

INTRODUCTION: Liver cancers are challenging to treat using image-guided radiotherapy (IGRT) due to motion and deformation of target volumes and organs at risk (OARs), as well as difficulties in visualising liver tumours using cone-beam computed tomography (CBCT) based IGRT. Liver cancer patients may thus benefit from magnetic resonance (MR)-guided daily adaptive re-planning. We evaluated the dosimetric impact of a daily plan adaptation strategy based on daily MR imaging versus CBCT-based IGRT. METHODS: Ten patients were studied who were treated with CBCT-guided five-fraction stereotactic body radiotherapy (SBRT) and underwent MR imaging before each fraction. Simulated reference plans were created on computer tomography (CT) images and adapted plans were created on the daily MR images. Two plan adaptation strategies were retrospectively simulated: (1) translational couch shifts to match liver, mimicking standard CBCT guidance and (2) daily plan adaptation based on reference plan clinical goals and daily target and OAR contours. Dose statistics were calculated for both strategies and compared. RESULTS: Couch shifts resulted in an average reduction in GTV D99% relative to reference plan values of 5.2 Gy (-12.5% of reference values). Daily plan adaptation reduced this to 0.8 Gy (-2.0%). For six patients who were OAR dose-limited on reference plans, couch shifts resulted in OAR dose violations in 28 out of 28 simulated fractions, respectively; no violations occurred using daily plan adaptation. No OAR dose violations occurred using either strategy for the four cases not OAR dose-limited at reference planning. CONCLUSIONS: MR-guided daily plan adaptation ensured OAR dose constraints were met at all simulated treatment fractions while CBCT-based IGRT resulted in a systematic over-dosing of OARs in patients whose doses were limited by OAR dose at the time of reference planning.


Assuntos
Radiocirurgia , Radioterapia Guiada por Imagem , Radioterapia de Intensidade Modulada , Humanos , Fígado/diagnóstico por imagem , Espectroscopia de Ressonância Magnética , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Estudos Retrospectivos
3.
J Appl Clin Med Phys ; 20(3): 81-88, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30817079

RESUMO

PURPOSE: Seasonal trends in linear accelerator output have been reported by at least one institution and data have suggested that they may be present at our center as well. The purpose of this work was to characterize these trends and determine whether local environmental conditions within the treatment rooms may be impacting the linear accelerators and/or the quality control (QC) dosimeter. METHODS: Runtime plots of daily output data, acquired using an in-house ion chamber-based device, over 3 yr and for 15 linear accelerators of different makes and models were reviewed and evaluated. Environmental conditions were monitored prospectively in a representative treatment room for approximately 9 months and evaluated for correlations with output trends. Independent measures of output using daily MV portal images were compared with output measurements using the ion chamber-based device. A separate controlled experiment probing the response of the in-house dosimeter to humidity changes over time was also carried out using a constant current source and a small enclosure. RESULTS: Runtime plots of output revealed sinusoidal, seasonal variations that were consistent across all treatment units, irrespective of manufacturer, model, or age of machine. The amplitude of the variation was on the order of 1% and maintained a yearly period. The independent measure of output using MV portal images did not corroborate the seasonal trends observed with the daily QC dosimeter. Based on the controlled experiment, the QC dosimeter was found to have a dependence on relative humidity changes, decreasing 1% in output per 30% increase in relative humidity. CONCLUSIONS: Results confirm the presence of underlying seasonal variations in measured output from the linear accelerators. The findings identify humidity impact on the measurement device as the underlying cause of the cyclical changes and not the accelerators themselves. These results could help minimize unwarranted machine servicing.


Assuntos
Calibragem , Aceleradores de Partículas/instrumentação , Aceleradores de Partículas/normas , Radiometria/instrumentação , Estações do Ano , Umidade , Fótons
4.
J Appl Clin Med Phys ; 20(7): 100-108, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31199568

RESUMO

PURPOSE: To evaluate the performance and stability of Elekta Agility multi-leaf collimator (MLC) leaf positioning using a daily, automated quality control (QC) test based on megavoltage (MV) images in combination with statistical process control tools, and identify special causes of variations in performance. METHODS: Leaf positions were collected daily for 13 Elekta linear accelerators over 11-37 months using the automated QC test, which analyzes 23 MV images to determine the location of MLC leaves relative to radiation isocenter. Leaf positioning stability was assessed using individual and moving range control charts. Specification levels of ±0.5, ±1, and ±1.5 mm were tested to determine positional accuracy. The durations between out-of-control and out-of-specification events were determined. Peaks in out-of-control leaf positions were identified and correlated to servicing events recorded for the whole duration of data collection. RESULTS: Mean leaf position error was -0.01 mm (range -1.3-1.6). Data stayed within ±1 mm specification for 457 days on average (range 3-838) and within ±1.5 mm for the entire date range. Measurements stayed within ±0.5 mm for 1 day on average (range 0-17); however, our MLC leaves were not calibrated to this level of accuracy. Leaf position varied little over time, as confirmed by tight individual (mean ±0.19 mm, range 0.09-0.43) and moving range (mean 0.23 mm, range 0.10-0.53) control limits. Due to sporadic out-of-control events, the mean in-control duration was 2.8 days (range 1-28.5). A number of factors were found to contribute to leaf position errors and out-of-control behavior, including servicing events, beam spot motion, and image artifacts. CONCLUSIONS: The Elekta Agility MLC model was found to perform with high stability, as evidenced by the tight control limits. The in-specification durations support the current recommendation of monthly MLC QC tests with a ±1 mm tolerance. Future work is on-going to determine if performance can be optimized further using high-frequency QC test results to drive recalibration frequency.


Assuntos
Modelos Estatísticos , Aceleradores de Partículas/instrumentação , Controle de Qualidade , Planejamento da Radioterapia Assistida por Computador/métodos , Calibragem , Humanos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
5.
Phys Med Biol ; 69(11)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38608644

RESUMO

Purpose. Radiation delivered over ultra-short timescales ('FLASH' radiotherapy) leads to a reduction in normal tissue toxicities for a range of tissues in the preclinical setting. Experiments have shown this reduction occurs for total delivery times less than a 'critical' time that varies by two orders of magnitude between brain (∼0.3 s) and skin (⪆10 s), and three orders of magnitude across different bowel experiments, from ∼0.01 to ⪆(1-10) s. Understanding the factors responsible for this broad variation may be important for translation of FLASH into the clinic and understanding the mechanisms behind FLASH.Methods.Assuming radiolytic oxygen depletion (ROD) to be the primary driver of FLASH effects, oxygen diffusion, consumption, and ROD were evaluated numerically for simulated tissues with pseudorandom vasculatures for a range of radiation delivery times, capillary densities, and oxygen consumption rates (OCR's). The resulting time-dependent oxygen partial pressure distribution histograms were used to estimate cell survival in these tissues using the linear quadratic model, modified to incorporate oxygen-enhancement ratio effects.Results. Independent of the capillary density, there was a substantial increase in predicted cell survival when the total delivery time was less than the capillary oxygen tension (mmHg) divided by the OCR (expressed in units of mmHg/s), setting the critical delivery time for FLASH in simulated tissues. Using literature OCR values for different normal tissues, the predicted range of critical delivery times agreed well with experimental values for skin and brain and, modifying our model to allow for fluctuating perfusion, bowel.Conclusions. The broad three-orders-of-magnitude variation in critical irradiation delivery times observed inin vivopreclinical experiments can be accounted for by the ROD hypothesis and differences in the OCR amongst simulated normal tissues. Characterization of these may help guide future experiments and open the door to optimized tissue-specific clinical protocols.


Assuntos
Oxigênio , Oxigênio/metabolismo , Cinética , Fatores de Tempo , Radioterapia/métodos , Humanos , Modelos Biológicos , Consumo de Oxigênio/efeitos da radiação , Sobrevivência Celular/efeitos da radiação
6.
Artigo em Inglês | MEDLINE | ID: mdl-38445180

RESUMO

Purpose: An integrated magnetic resonance scanner and linear accelerator (MR-linac) was implemented with daily online adaptive radiation therapy (ART). This study evaluated patient-reported experiences with their overall hospital care as well as treatment in the MR-linac environment. Methods: Patients pre-screened for MR eligibility and claustrophobia were referred to simulation on a 1.5 T MR-linac. Patient-reported experience measures were captured using two validated surveys. The 15-item MR-anxiety questionnaire (MR-AQ) was administered immediately after the first treatment to rate MR-related anxiety and relaxation. The 40-item satisfaction with cancer care questionnaire rating doctors, radiation therapists, the services and care organization and their outpatient experience was administered immediately after the last treatment using five-point Likert responses. Results were analyzed using descriptive statistics. Results: 205 patients were included in this analysis. Multiple sites were treated across the pelvis and abdomen with a median treatment time per fraction of 46 and 66 min respectively. Patients rated MR-related anxiety as "not at all" (87%), "somewhat" (11%), "moderately" (1%) and "very much so" (1%). Positive satisfaction responses ranged from 78 to 100% (median 93%) across all items. All radiation therapist-specific items were rated positively as 96-100%. The five lowest rated items (range 78-85%) were related to general provision of information, coordination, and communication. Overall hospital care was rated positively at 99%. Conclusion: In this large, single-institution prospective cohort, all patients had low MR-related anxiety and completed treatment as planned despite lengthy ART treatments with the MR-linac. Patients overall were highly satisfied with their cancer care involving ART using an MR-linac.

7.
Pract Radiat Oncol ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37967747

RESUMO

PURPOSE: This work aims at reviewing challenges and pitfalls in proton facility design related to equipment upgrade or replacement. Proton therapy was initially developed at research institutions in the 1950s which ushered in the use of hospital-based machines in 1990s. We are approaching an era where older commercial machines are reaching the end of their life and require replacement. The future widespread application of proton therapy depends on cost reduction; customized building design and installation are significant expenses. METHODS AND MATERIALS: We take this opportunity to discuss how commercial proton machines have been installed and how buildings housing the equipment have been designed. RESULTS: Data on dimensions and weights of the larger components of proton systems (cyclotron main magnet and gantries) are presented and innovative, non-gantry-based, patient positioning systems are discussed. CONCLUSIONS: We argue that careful consideration of the building design to include larger elevators, hoistways from above, wide corridors and access slopes to below grade installations, generic vault and treatment room layouts to accommodate multiple vendor's equipment, and modular system design can provide specific benefits during planning, installation, maintenance, and replacement phases of the project. Room temperature magnet coils can be constructed in a more modular manner: a potential configuration is presented. There is scope for constructing gantries and magnet yokes from smaller modular sub-units. These considerations would allow a hospital to replace a commercial machine at its end of life in a manner similar to a linac.

8.
Crit Rev Oncol Hematol ; 192: 104143, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37742884

RESUMO

With increasing reliance on technology in oncology, the impact of digital clinical decision support (CDS) tools needs to be examined. A systematic review update was conducted and peer-reviewed literature from 2016 to 2022 were included if CDS tools were used for live decision making and comparatively assessed quantitative outcomes. 3369 studies were screened and 19 were included in this updated review. Combined with a previous review of 24 studies, a total of 43 studies were analyzed. Improvements in outcomes were observed in 42 studies, and 34 of these were of statistical significance. Computerized physician order entry and clinical practice guideline systems comprise the greatest number of evaluated CDS tools (13 and 10 respectively), followed by those that utilize patient-reported outcomes (8), clinical pathway systems (8) and prescriber alerts for best-practice advisories (4). Our review indicates that CDS can improve guideline adherence, patient-centered care, and care delivery processes in oncology.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Sistemas de Registro de Ordens Médicas , Humanos , Oncologia
9.
Phys Med Biol ; 67(11)2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35576920

RESUMO

Purpose.It has been postulated that the delivery of radiotherapy at ultra-high dose rates ('FLASH') reduces normal tissue toxicities by depleting them of oxygen. The fraction of normal tissue and cancer cells surviving radiotherapy depends on dose and oxygen levels in an exponential manner and even a very small fraction of tissue at low oxygen levels can determine radiotherapy response. To quantify the differential impact of FLASH radiotherapy on normal and tumour tissues, the spatial heterogeneity of oxygenation in tissue should thus be accounted for.Methods.The effect of FLASH on radiation-induced normal and tumour tissue cell killing was studied by simulating oxygen diffusion, metabolism, and radiolytic oxygen depletion (ROD) over domains with simulated capillary architectures. To study the impact of heterogeneity, two architectural models were used: (1) randomly distributed capillaries and (2) capillaries forming a regular square lattice array. The resulting oxygen partial pressure distribution histograms were used to simulate normal and tumour tissue cell survival using the linear quadratic model of cell survival, modified to incorporate oxygen-enhancement ratio effects. The ratio ('dose modifying factors') of conventional low-dose-rate dose and FLASH dose at iso-cell survival was computed and compared with empirical iso-toxicity dose ratios.Results.Tumour cell survival was found to be increased by FLASH as compared to conventional radiotherapy, with a 0-1 order of magnitude increase for expected levels of tumour hypoxia, depending on the relative magnitudes of ROD and tissue oxygen metabolism. Interestingly, for the random capillary model, the impact of FLASH on well-oxygenated (normal) tissues was found to be much greater, with an estimated increase in cell survival by up to 10 orders of magnitude, even though reductions in mean tissue partial pressure were modest, less than ∼7 mmHg for the parameter values studied. The dose modifying factor for normal tissues was found to lie in the range 1.2-1.7 for a representative value of normal tissue oxygen metabolic rate, consistent with preclinical iso-toxicity results.Conclusions.The presence of very small nearly hypoxic regions in otherwise well-perfused normal tissues with high mean oxygen levels resulted in a greater proportional sparing of normal tissue than tumour cells during FLASH irradiation, possibly explaining empirical normal tissue sparing and iso-tumour control results.


Assuntos
Neoplasias , Radioterapia (Especialidade) , Sobrevivência Celular , Humanos , Neoplasias/radioterapia , Oxigênio/metabolismo , Radioterapia , Dosagem Radioterapêutica
10.
Technol Cancer Res Treat ; 21: 15330338221123108, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36285543

RESUMO

ObjectivesPandemics, natural disasters, and other unforeseen circumstances can cause short-term variation in radiotherapy utilization. In this study, we aim to develop a model to forecast linear accelerator (LINAC) utilization during periods of varying workloads. Methods: Using computed tomography (CT)-simulation data and the rate of new LINAC appointment bookings in the preceding week as input parameters, a multiple linear regression model to forecast LINAC utilization over a 15-working day horizon was developed and tested on institutional data. Results: Future LINAC utilization was estimated in our training dataset with a forecasting error of 3.3%, 5.9%, and 7.2% on days 5, 10, and 15, respectively. The model identified significant variations (≥5% absolute differences) in LINAC utilization with an accuracy of 69%, 62%, and 60% on days 5, 10, and 15, respectively. The results were similar in the validation dataset with forecasting errors of 3.4%, 5.3%, and 6.2% and accuracy of 67%, 60%, and 58% on days 5, 10, and 15, respectively. These results compared favorably to moving average and exponential smoothing forecasting techniques. Conclusions: The developed linear regression model was able to accurately forecast future LINAC utilization based on LINAC booking rate and CT simulation data, and has been incorporated into our institutional dashboard for broad distribution. Advances in knowledge: Our proposed linear regression model is a practical and intuitive approach to forecasting short-term LINAC utilization, which can be used for resource planning and allocation during periods with varying LINAC workloads.


Assuntos
Aceleradores de Partículas , Carga de Trabalho , Humanos , Previsões , Modelos Lineares
11.
Front Oncol ; 12: 1086258, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36776378

RESUMO

MRI-linear accelerator (MR-linac) devices have been introduced into clinical practice in recent years and have enabled MR-guided adaptive radiation therapy (MRgART). However, by accounting for anatomical changes throughout radiation therapy (RT) and delivering different treatment plans at each fraction, adaptive radiation therapy (ART) highlights several challenges in terms of calculating the total delivered dose. Dose accumulation strategies-which typically involve deformable image registration between planning images, deformable dose mapping, and voxel-wise dose summation-can be employed for ART to estimate the delivered dose. In MRgART, plan adaptation on MRI instead of CT necessitates additional considerations in the dose accumulation process because MRI pixel values do not contain the quantitative information used for dose calculation. In this review, we discuss considerations for dose accumulation specific to MRgART and in relation to current MR-linac clinical workflows. We present a general dose accumulation framework for MRgART and discuss relevant quality assurance criteria. Finally, we highlight the clinical importance of dose accumulation in the ART era as well as the possible ways in which dose accumulation can transform clinical practice and improve our ability to deliver personalized RT.

12.
Cureus ; 13(2): e13606, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33816005

RESUMO

Stereotactic radiotherapy (SBRT) has been applied to treat cardiac arrhythmias, but our institution had not yet implemented this technique. Here, we explain how we used implementation science and knowledge translation to provide cardiac SBRT to a critically ill patient with malignancy-associated refractory ventricular tachycardia. We reviewed the critical factors that enabled the implementation of this urgent treatment, such as the context of the implementation, the characteristics of the intervention, and the stakeholders. These principles can be used by other radiation programs to implement novel treatments in urgent settings, where the gold standard process of planning and developing policies and protocols is not possible.

13.
Med Phys ; 48(10): e830-e885, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34036590

RESUMO

The charges on this task group (TG) were as follows: (a) provide specific procedural guidelines for performing the tests recommended in TG 142; (b) provide estimate of the range of time, appropriate personnel, and qualifications necessary to complete the tests in TG 142; and (c) provide sample daily, weekly, monthly, or annual quality assurance (QA) forms. Many of the guidelines in this report are drawn from the literature and are included in the references. When literature was not available, specific test methods reflect the experiences of the TG members (e.g., a test method for door interlock is self-evident with no literature necessary). In other cases, the technology is so new that no literature for test methods was available. Given broad clinical adaptation of volumetric modulated arc therapy (VMAT), which is not a specific topic of TG 142, several tests and criteria specific to VMAT were added.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Aceleradores de Partículas , Garantia da Qualidade dos Cuidados de Saúde , Dosagem Radioterapêutica
14.
Phys Med Biol ; 66(18)2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34438383

RESUMO

Dose painting of hypoxic tumour sub-volumes using positron-emission tomography (PET) has been shown to improve tumour controlin silicoin several sites, predominantly head and neck and lung cancers. Pancreatic cancer presents a more stringent challenge, given its proximity to critical gastro-intestinal organs-at-risk (OARs), anatomic motion, and impediments to reliable PET hypoxia quantification. A radiobiological model was developed to estimate clonogen survival fraction (SF), using18F-fluoroazomycin arabinoside PET (FAZA PET) images from ten patients with unresectable pancreatic ductal adenocarcinoma to quantify oxygen enhancement effects. For each patient, four simulated five-fraction stereotactic body radiotherapy (SBRT) plans were generated: (1) a standard SBRT plan aiming to cover the planning target volume with 40 Gy, (2) dose painting plans delivering escalated doses to a maximum of three FAZA-avid hypoxic sub-volumes, (3) dose painting plans with simulated spacer separating the duodenum and pancreatic head, and (4), plans with integrated boosts to geometric contractions of the gross tumour volume (GTV). All plans saturated at least one OAR dose limit. SF was calculated for each plan and sensitivity of SF to simulated hypoxia quantification errors was evaluated. Dose painting resulted in a 55% reduction in SF as compared to standard SBRT; 78% with spacer. Integrated boosts to hypoxia-blind geometric contractions resulted in a 41% reduction in SF. The reduction in SF for dose-painting plans persisted for all hypoxia quantification parameters studied, including registration and rigid motion errors that resulted in shifts and rotations of the GTV and hypoxic sub-volumes by as much as 1 cm and 10 degrees. Although proximity to OARs ultimately limited dose escalation, with estimated SFs (∼10-5) well above levels required to completely ablate a ∼10 cm3tumour, dose painting robustly reduced clonogen survival when accounting for expected treatment and imaging uncertainties and thus, may improve local response and associated morbidity.


Assuntos
Neoplasias Pancreáticas , Radiocirurgia , Radioterapia de Intensidade Modulada , Humanos , Hipóxia , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/radioterapia , Tomografia por Emissão de Pósitrons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Tomografia Computadorizada por Raios X
15.
Med Phys ; 37(5): 2110-20, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20527544

RESUMO

PURPOSE: The beam model in a three dimensional treatment planning system (TPS) defines virtually the mechanical and dosimetric characteristics of a treatment unit. The manual optimization of a beam model during commissioning can be a time consuming task due to its iterative nature. Furthermore, the quality of the beam model commissioning depends on the user's ability to manage multiple parameters and assess their impact on the agreement between measured and calculated dose. The objective of this work is to develop and validate the performance of an automated beam model optimization system (ABMOS) based on intensity modulated radiotherapy (IMRT) beam measurements to improve beam model accuracy while streamlining the commissioning process. METHODS: The ABMOS was developed to adjust selected TPS beam model parameters iteratively to maximize the agreement between measured and calculated 2D dose maps obtained for an IMRT beam pattern. A 2D diode array with high spatial resolution detectors was used to sample the entire IMRT beam pattern in a single dose measurement. The use of an IMRT beam pattern with large number of monitor units was selected to highlight the difference between planned and delivered dose and improve the signal to noise ratio in the low dose regions. ABMOS was applied to the optimization of a beam model for an Elekta Synergy S treatment unit. The optimized beam model was validated for two anatomical sites (25 paraspinal and 25 prostate cases) using two independent patient-specific IMRT quality control (QC) methods based on ion chamber and 2D diode array measurements, respectively. The conventional approach of comparing calculated and measured beam profiles and percent-depth dose curves was also used to assess improvement in beam model after ABMOS optimization. Elements of statistical process control were applied to the process of patient-specific QC performed with the ion chamber and the 2D array to complement the model comparison. RESULTS: After beam model optimization with ABMOS, improvement in planned to delivered dose agreement was demonstrated with both patient-specific IMRT QC methods and the calculated to measured profile comparison. In terms of ion chamber measurements, the largest improvement was observed for the paraspinal cases with the mean measured to calculated dose difference at the low dose points decreasing from - 13.8% to 2.0% with the optimized beam model. The 2D diode array patient-specific QC also demonstrated clearly the improvement in beam model for both paraspinal and prostate cases with, on average, more than 96% of the diodes satisfying tolerances of 3% of dose difference or 2 mm of distance to agreement after ABMOS optimization. The capability index (C(pk)) for both patient-specific QC methods also increased with the optimized beam model. CONCLUSIONS: In this work, ABMOS was developed to use 2D diode array measurements of an IMRT beam pattern for the automated multivariable optimization of a TPS beam model. Based on the observed improvements in patient-specific QC results for 25 paraspinal and 25 prostate plans, optimization of the remaining clinical beam models using ABMOS is now ongoing in the institution.


Assuntos
Planejamento da Radioterapia Assistida por Computador/métodos , Automação , Humanos , Radiometria , Radioterapia de Intensidade Modulada
16.
Med Phys ; 36(5): 1813-21, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19544800

RESUMO

The objective of this work is to assess the suitability and performance of a new dosimeter system with a novel geometry for the quality assurance (QA) of volumetric modulated arc therapy (VMAT). The new dosimeter system consists of a hollow cylinder (15 and 25 cm inner and outer diameters) with 124 diodes embedded in the phantom's cylindrical wall forming four rings of detectors. For coplanar beams, the cylindrical geometry and the ring diode pattern offer the advantage of invariant perpendicular incidence on the beam central axis for any gantry angle and also have the benefit of increasing the detector density as both walls of the cylinder sample the beam. Other advantages include real-time readout and reduced weight with the hollow phantom shape. A calibration method taking into account the variation in radiation sensitivity of the diodes as a function of gantry angle was developed and implemented. In this work, the new dosimeter system was used in integrating mode to perform composite dose measurements along the cylindrical surface supporting the diodes. The reproducibility of the dosimeter response and the angular dependence of the diodes were assessed using simple 6 MV photon static beams. The performance of the new dosimeter system for VMAT QA was then evaluated using VMAT plans designed for a head and neck, an abdominal sarcoma, and a prostate patient. These plans were optimized with 90 control points (CPs) and additional versions of each plan were generated by increasing the number of CPs to 180 and 360 using linear interpolation. The relative dose measured with the dosimeter system for the VMAT plans was compared to the corresponding TPS dose map in terms of relative dose difference (% deltaD) and distance to agreement (DTA). The dosimeter system's sensitivity to gantry rotation offset and scaling errors as well as setup errors was also evaluated. For static beams, the dosimeter system offered good reproducibility and demonstrated small residual diode angular dependence after calibration. For VMAT deliveries, the agreement between measured and calculated doses was good with > or = 86.4% of the diodes satisfying 3% of % deltaD or 2 mm DTA for the 180 CP plans. The phantom offered sufficient sensitivity for the detection of small gantry rotation offset (3 degrees) and scaling errors (1 degree) as well as phantom setup errors of 1 mm, although the results were plan dependent. With its novel geometry, the dosimeter system was also able to experimentally demonstrate the discretization effect of the number of CPs used in the TPS to simulate a continuous arc. These results demonstrate the suitability of the new dosimeter system for the patient-specific QA of VMAT plans and suggest that the dosimeter system can be an effective tool in the routine QA and commissioning of treatment machines capable of VMAT delivery and cone-beam CT image guidance.


Assuntos
Carga Corporal (Radioterapia) , Garantia da Qualidade dos Cuidados de Saúde/métodos , Radiometria/instrumentação , Radioterapia Conformacional/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Imagens de Fantasmas , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Semicondutores , Sensibilidade e Especificidade
17.
Technol Cancer Res Treat ; 8(4): 271-80, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19645520

RESUMO

Stereotactic radiosurgery (SRS) refers to a single radiation treatment delivering a high dose to an intra-cranial target localized in three-dimensions by CT and/or MRI imaging. Traditionally, immobilization of the patient's head has been achieved using a rigid stereotactic head frame as the key step in allowing for accurate dose delivery. SRS has been delivered by both Cobalt-60 (Gamma Knife) and linear accelerator (linac) technologies for many decades. The focus of this review is to highlight recent advances and major innovations in SRS technologies relevant to clinical practice and developments allowing for non-invasive frame SRS.


Assuntos
Encéfalo/cirurgia , Radiocirurgia/métodos , Humanos , Radiocirurgia/instrumentação , Tomografia Computadorizada por Raios X
18.
J Med Imaging Radiat Sci ; 50(2): 297-307, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31176438

RESUMO

BACKGROUND: CT simulator for radiation therapy aims to produce high-quality images for dose calculation and delineation of target and organs at risk in the process of treatment planning. Selection of CT imaging protocols that achieve a desired image quality while minimizing patient dose depends on technical CT parameters and their relationship with image quality and radiation dose. For similar imaging protocols using comparable technical CT parameters, there are also variations in image quality metrics between different CT simulator models. Understanding the relationship and variation is important for selecting appropriate imaging protocol and standardizing QC process. Here, we proposed an automated method to determine the relationship between image quality and radiation dose for various CT technical parameters. MATERIAL AND METHOD: The impact of scan parameters on various aspects of image quality and volumetric CT dose index for a Philips Brilliance Big Bore and a Toshiba Aquilion One CT scanners were determined by using commercial phantom and automated image quality analysis software and cylindrical radiation dose phantom. RESULTS AND DISCUSSION: Both scanners had very similar and satisfactory performance based on the diagnostic acceptance criteria recommended by ACR, International Atomic Energy Agency, and American Association of Physicists in Medicine. However, our results showed a compromise between different image quality components such as low-contrast and spatial resolution with the change of scanning parameters and revealed variations between the two scanners on their image quality performance. Measurement using a generic phantom and analysis by automated software was unbiased and efficient. CONCLUSION: This method provides information that can be used as a baseline for CT scanner image quality and dosimetric QC for different CT scanner models in a given institution or across sites.


Assuntos
Doses de Radiação , Planejamento da Radioterapia Assistida por Computador , Tomógrafos Computadorizados/normas , Tomografia Computadorizada por Raios X/instrumentação , Algoritmos , Simulação por Computador , Humanos , Imagens de Fantasmas , Controle de Qualidade , Planejamento da Radioterapia Assistida por Computador/instrumentação , Planejamento da Radioterapia Assistida por Computador/normas
19.
Neurosurgery ; 84(2): 435-441, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29547929

RESUMO

BACKGROUND: Stereotactic body radiotherapy (SBRT) of the spine provides superior tumor control, but vertebral compression fractures are increased and the pathophysiological process underneath is not well understood. Data on histopathological changes, particularly after salvage SBRT (sSBRT) following conventional irradiation, are scarce. OBJECTIVE: To investigate surgical specimens after sSBRT and primary SBRT (pSBRT) regarding histopathological changes. METHODS: We assessed 704 patients treated with spine SBRT 2006 to 2012. Thirty patients underwent salvage surgery; 23 histopathological reports were available. Clinical and histopathological findings were analyzed for sSBRT (69.6%) and pSBRT (30.4%). RESULTS: Mean time to surgery after sSBRT/pSBRT was 8.3/10.3 mo (P = .64). Reason for surgery included pain (sSBRT/pSBRT: 12.5%/71.4%, P = .25), fractures (sSBRT/pSBRT: 37.5%/28.6%, P = .68), and neurological symptoms (sSBRT/pSBRT: 68.8%/42.9%, P = .24). Radiological tumor progression after sSBRT/pSBRT was seen in 71.4%/42.9% (P = .2). Most specimens displayed viable/proliferative tumor (sSBRT/pSBRT: 62.5%/71.4%, P = .68 and 56.3%/57.1%, P = .97). Few specimens showed soft tissue necrosis (sSBRT/pSBRT: 20%/28.6%, P = .66), osteonecrosis (sSBRT/pSBRT: 14.3%/16.7%, P = .89), or bone marrow fibrosis (sSBRT/pSBRT: 42.9%/33.3%, P = .69). Tumor bed necrosis was more common after sSBRT (81.3%/42.9%, P = .066). Radiological tumor progression correlated with viable/proliferative tumor (P = .03/P = .006) and tumor bed necrosis (P = .03). Fractures were increased with bone marrow fibrosis (P = .07), but not with osteonecrosis (P = .53) or soft tissue necrosis (P = .19). Neurological symptoms were common with radiological tumor progression (P = .07), but not with fractures (P = .18). CONCLUSION: For both, sSBRT and pSBRT, histopathological changes were similar. Neurological symptoms were attributable to tumor progression and pathological fractures were not associated with osteonecrosis or tumor progression.


Assuntos
Radiocirurgia/efeitos adversos , Reirradiação/efeitos adversos , Terapia de Salvação/efeitos adversos , Neoplasias da Coluna Vertebral/radioterapia , Adulto , Idoso , Estudos de Coortes , Feminino , Fraturas por Compressão/epidemiologia , Fraturas por Compressão/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Necrose/epidemiologia , Necrose/etiologia , Lesões por Radiação/epidemiologia , Lesões por Radiação/etiologia , Radiocirurgia/métodos , Reirradiação/métodos , Terapia de Salvação/métodos , Fraturas da Coluna Vertebral/epidemiologia , Fraturas da Coluna Vertebral/etiologia , Neoplasias da Coluna Vertebral/secundário
20.
Med Phys ; 35(1): 367-76, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18293591

RESUMO

A treatment process which integrates simulation, planning, and delivery in one single session of < or =30 min on a treatment unit capable of cone-beam CT imaging (CBCT) is under development in our institution for palliation of spinal metastases. The objective of this work is to develop and validate a semiautomatic vertebra detection and identification algorithm to streamline the target definition process and improve the consistency of online planning on cone-beam CT data sets while the patient is on the treatment couch. Key issues pertaining to this work are the limited field of view and image quality of CBCT, the inter- and intrapatient variation of vertebra morphology, and the spine curvature. An initial library of ten patient CBCT data sets was used to derive the vertebra detection and identification method and set the parameters used by the algorithm. In this method, sagittal and coronal "curved" digitally reconstructed radiographs (cDRRs) are first created by projecting a subvolume of the CBCT data orthogonally to the centerline of a cylinder model positioned manually. The detection of the vertebra centers is then performed on the cDRRs based on an edge detection algorithm. The identification of the vertebrae by name is based on the detection of one or more of four different reference anatomical landmarks on cDRRs. The validation of the vertebra detection and identification algorithm was performed on a library of 27 patient CBCT data sets with an average detection success rate of 92.8% and 89.9% for sagittal and coronal cDRRs, respectively, for three different users. The entire process including manual steps and user approval was performed on average in 3.23-3.45 min (n=37, three users), with only 0.14 min for the automatic detection and identification of the vertebrae. The semiautomatic identification and segmentation of vertebrae on CBCT images was shown to be robust and effective. The next step will be the clinical implementation of the algorithm within the online planning and delivery treatment technique for patients with spinal bone metastases.


Assuntos
Neoplasias Ósseas/radioterapia , Neoplasias Ósseas/secundário , Cuidados Paliativos/métodos , Neoplasias da Coluna Vertebral/patologia , Neoplasias da Coluna Vertebral/radioterapia , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/patologia , Algoritmos , Ensaios Clínicos como Assunto , Tomografia Computadorizada de Feixe Cônico , Humanos , Planejamento da Radioterapia Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA