Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(40): e2210649119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161950

RESUMO

Molecular pathways that intrinsically regulate neuronal maintenance are poorly understood, but rare pathogenic mutations that underlie neurodegenerative disease can offer important insights into the mechanisms that facilitate lifelong neuronal function. Here, we leverage a rat model to demonstrate directly that the TFG p.R106C variant implicated previously in complicated forms of hereditary spastic paraplegia (HSP) underlies progressive spastic paraparesis with accompanying ventriculomegaly and thinning of the corpus callosum, consistent with disease phenotypes identified in adolescent patients. Analyses of primary cortical neurons obtained from CRISPR-Cas9-edited animals reveal a kinetic delay in biosynthetic secretory protein transport from the endoplasmic reticulum (ER), in agreement with prior induced pluripotent stem cell-based studies. Moreover, we identify an unexpected role for TFG in the trafficking of Rab4A-positive recycling endosomes specifically within axons and dendrites. Impaired TFG function compromises the transport of at least a subset of endosomal cargoes, which we show results in down-regulated inhibitory receptor signaling that may contribute to excitation-inhibition imbalances. In contrast, the morphology and trafficking of other organelles, including mitochondria and lysosomes, are unaffected by the TFG p.R106C mutation. Our findings demonstrate a multifaceted role for TFG in secretory and endosomal protein sorting that is unique to cells of the central nervous system and highlight the importance of these pathways to maintenance of corticospinal tract motor neurons.


Assuntos
Endossomos , Neurônios Motores , Transporte Proteico , Animais , Ratos , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Neurônios Motores/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas/metabolismo , Paraplegia Espástica Hereditária/metabolismo
2.
EMBO J ; 31(22): 4334-47, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23064147

RESUMO

The centriole is a conserved microtubule-based organelle essential for both centrosome formation and cilium biogenesis. Five conserved proteins for centriole duplication have been identified. Two of them, SAS-5 and SAS-6, physically interact with each other and are codependent for their targeting to procentrioles. However, it remains unclear how these two proteins interact at the molecular level. Here, we demonstrate that the short SAS-5 C-terminal domain (residues 390-404) specifically binds to a narrow central region (residues 275-288) of the SAS-6 coiled coil. This was supported by the crystal structure of the SAS-6 coiled-coil domain (CCD), which, together with mutagenesis studies, indicated that the association is mediated by synergistic hydrophobic and electrostatic interactions. The crystal structure also shows a periodic charge pattern along the SAS-6 CCD, which gives rise to an anti-parallel tetramer. Overall, our findings establish the molecular basis of the specific interaction between SAS-5 and SAS-6, and suggest that both proteins individually adopt an oligomeric conformation that is disrupted upon the formation of the hetero-complex to facilitate the correct assembly of the nine-fold symmetric centriole.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Centríolos/química , Cristalografia por Raios X , Dados de Sequência Molecular , Ligação Proteica , Estrutura Secundária de Proteína
3.
Mol Biol Cell ; 33(14): ar144, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36287829

RESUMO

Membrane remodeling mediated by heteropolymeric filaments composed of ESCRT-III subunits is an essential process that occurs at a variety of organelles to maintain cellular homeostasis. Members of the evolutionarily conserved Lgd/CC2D1 protein family have been suggested to regulate ESCRT-III polymer assembly, although their specific roles, particularly in vivo, remain unclear. Using the Caenorhabditis elegans early embryo as a model system, we show that Lgd/CC2D1 localizes to endosomal membranes, and its loss impairs endolysosomal cargo sorting and degradation. At the ultrastructural level, the absence of Lgd/CC2D1 results in the accumulation of enlarged endosomal compartments that contain a reduced number of intralumenal vesicles (ILVs). However, unlike aberrant endosome morphology caused by depletion of other ESCRT components, ILV size is only modestly altered in embryos lacking Lgd/CC2D1. Instead, loss of Lgd/CC2D1 impairs normal accumulation of ESCRT-III on endosomal membranes, likely slowing the kinetics of ILV formation. Together, our findings suggest a role for Lgd/CC2D1 in the recruitment and/or stable assembly of ESCRT-III subunits on endosomal membranes to facilitate efficient ILV biogenesis.


Assuntos
Endossomos , Corpos Multivesiculares , Animais , Corpos Multivesiculares/metabolismo , Endossomos/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Membranas Intracelulares/metabolismo , Transporte Proteico/fisiologia , Caenorhabditis elegans/metabolismo
4.
Cell Rep ; 38(3): 110263, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35045304

RESUMO

The late-acting endosomal sorting complex required for transport (ESCRT) machinery has been implicated in facilitating the resealing of the nuclear envelope (NE) after mitosis, enabling compartmentalization of the genome away from the cytoplasm. Here, we leverage the stereotypic first division of the C. elegans embryo to identify additional functions of the ESCRT machinery in maintaining the structure of the inner nuclear membrane. Specifically, impaired ESCRT function results in a defect in the pruning of inner nuclear membrane invaginations, which arise normally during NE reformation and expansion. Additionally, in combination with a hypomorphic mutation that interferes with assembly of the underlying nuclear lamina, inhibition of ESCRT function significantly perturbs NE architecture and increases chromosome segregation defects, resulting in penetrant embryonic lethality. Our findings highlight links between ESCRT-mediated inner nuclear membrane remodeling, maintenance of nuclear envelope morphology, and the preservation of the genome during early development.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Mitose/fisiologia , Membrana Nuclear/metabolismo , Animais , Caenorhabditis elegans
5.
Structure ; 22(8): 1090-1104, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-24980795

RESUMO

Plk4 family kinases control centriole assembly. Plk4s target mother centrioles through an interaction between their cryptic polo box (CPB) and acidic regions in the centriolar receptors SPD-2/Cep192 and/or Asterless/Cep152. Here, we report a crystal structure for the CPB of C. elegans ZYG-1, which forms a Z-shaped dimer containing an intermolecular ß sheet with an extended basic surface patch. Biochemical and in vivo analysis revealed that electrostatic interactions dock the ZYG-1 CPB basic patch onto the SPD-2-derived acidic region to promote ZYG-1 targeting and new centriole assembly. Analysis of a different crystal form of the Drosophila Plk4 (DmPlk4) CPB suggests that it also forms a Z-shaped dimer. Comparison of the ZYG-1 and DmPlk4 CPBs revealed structural changes in the ZYG-1 CPB that confer selectivity for binding SPD-2 over Asterless-derived acidic regions. Overall, our findings suggest a conserved mechanism for centriolar docking of Plk4 homologs that initiate daughter centriole assembly.


Assuntos
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Centríolos/fisiologia , Modelos Moleculares , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Caenorhabditis elegans/genética , Centríolos/metabolismo , Dimerização , Dados de Sequência Molecular , Ligação Proteica , Proteínas Quinases/genética , Estrutura Terciária de Proteína , Especificidade da Espécie , Relação Estrutura-Atividade
6.
Dev Cell ; 25(3): 284-98, 2013 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-23673331

RESUMO

Assembly of SAS-6 dimers to form the centriolar cartwheel requires the ZYG-1/Plk4 kinase. Here, we show that ZYG-1 recruits SAS-6 to the mother centriole independently of its kinase activity; kinase activity is subsequently required for cartwheel assembly. We identify a direct interaction between ZYG-1 and the SAS-6 coiled coil that explains its kinase activity-independent function in SAS-6 recruitment. Perturbing this interaction, or the interaction between an adjacent segment of the SAS-6 coiled coil and SAS-5, prevented SAS-6 recruitment and cartwheel assembly. SAS-6 mutants with alanine substitutions in a previously described ZYG-1 target site or in 37 other residues, either phosphorylated by ZYG-1 in vitro or conserved in closely related nematodes, all supported cartwheel assembly. We propose that ZYG-1 binding to the SAS-6 coiled coil recruits the SAS-6-SAS-5 complex to the mother centriole, where a ZYG-1 kinase activity-dependent step, whose target is unlikely to be SAS-6, triggers cartwheel assembly.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Proteínas Quinases/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados/embriologia , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Centríolos/genética , Sequência Conservada , Embrião não Mamífero/metabolismo , Ativação Enzimática , Masculino , Dados de Sequência Molecular , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Fosforilação , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Quinases/genética , Multimerização Proteica , Interferência de RNA , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA