Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Pharmacol Transl Sci ; 7(9): 2677-2693, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39296260

RESUMO

Autoimmune and autoinflammatory diseases account for more than 80 chronic conditions affecting more than 24 million people in the US. Among these autoinflammatory diseases, noninfectious chronic inflammation of the gastrointestinal (GI) tract causes inflammatory bowel diseases (IBDs), primarily Crohn's and ulcerative colitis (UC). IBD is a complex disease, and one hypothesis is that these are either caused or worsened by compounds produced by bacteria in the gut. While traditional approaches have focused on pan immunosuppressive techniques (e.g., steroids), low remission rates, prolonged illnesses, and an increased frequency of surgical procedures have prompted the search for more targeted and precision therapeutic approaches. IBD is a complex disease resulting from both genetic and environmental factors, but several recent studies have highlighted the potential pivotal contribution of gut microbiota dysbiosis. Gut microbiota are known to modulate the immune status of the gut by producing metabolites that are encoded in biosynthetic gene clusters (BGCs) of the bacterial genome. Here, we show a targeted and high-throughput screening of more than 90 biosynthetic genes in 41 gut anaerobes, through downselection using available bioinformatics tools, targeted gene manipulation in these genetically intractable organisms using the Nanoligomer platform, and identification and synthesis of top microbiome targets as a Nanoligomer BGC cocktail (SB_BGC_CK1, abbreviated as CK1) as a feasible precision therapeutic approach. Further, we used a host-directed immune target screening to identify the NF-κB and NLRP3 cocktail SB_NI_112 (or NI112 for short) as a targeted inflammasome inhibitor. We used these top two microbe- and host-targeted Nanoligomer cocktails in acute and chronic dextran sulfate sodium (DSS) mouse colitis and in TNFΔARE/+ transgenic mice that develop spontaneous Crohn's like ileitis. The mouse microbiome was humanized to replicate that in human IBD through antibiotic treatment, followed by mixed fecal gavage from 10 human donors and spiked with IBD-inducing microbial species. Following colonization, colitis was induced in mice using 1 week of 3% DSS (acute) or 6 weeks of 3 rounds of 2.5% DSS induction for a week followed by 1 week of no DSS (chronic colitis model). Both Nanoligomer cocktails (CK1 and NI112) showed a strong reduction in disease severity, significant improvement in disease histopathology, and profound downregulation of disease biomarkers in colon tissue, as assessed by multiplexed ELISA. Further, we used two different formulations of intraperitoneal injections (IP) and Nanoligomer pills in the chronic DSS colitis model. Although both formulations were highly effective, the oral pill formulation demonstrated a greater reduction in biochemical markers compared to IP. A similar therapeutic effect was observed in the TNFΔARE/+ model. Overall, these results point to the potential for further development and testing of this inflammasome-targeting host-directed therapy (NI112) and more personalized microbiome cocktails (CK1) for patients with recalcitrant IBD.

2.
Microbiome ; 11(1): 256, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978573

RESUMO

BACKGROUND: Intestinal epithelial cell (IEC) mitochondrial dysfunction involvement in inflammatory bowel diseases (IBD), including Crohn's disease affecting the small intestine, is emerging in recent studies. As the interface between the self and the gut microbiota, IECs serve as hubs of bidirectional cross-talk between host and luminal microbiota. However, the role of mitochondrial-microbiota interaction in the ileum is largely unexplored. Prohibitin 1 (PHB1), a chaperone protein of the inner mitochondrial membrane required for optimal electron transport chain function, is decreased during IBD. We previously demonstrated that mice deficient in PHB1 specifically in IECs (Phb1i∆IEC) exhibited mitochondrial impairment, Paneth cell defects, gut microbiota dysbiosis, and spontaneous inflammation in the ileum (ileitis). Mice deficient in PHB1 in Paneth cells (epithelial secretory cells of the small intestine; Phb1∆PC) also exhibited mitochondrial impairment, Paneth cell defects, and spontaneous ileitis. Here, we determined whether this phenotype is driven by Phb1 deficiency-associated ileal microbiota alterations or direct effects of loss of PHB1 in host IECs. RESULTS: Depletion of gut microbiota by broad-spectrum antibiotic treatment in Phb1∆PC or Phb1i∆IEC mice revealed a necessary role of microbiota to cause ileitis. Using germ-free mice colonized with ileal microbiota from Phb1-deficient mice, we show that this microbiota could not independently induce ileitis without host mitochondrial dysfunction. The luminal microbiota phenotype of Phb1i∆IEC mice included a loss of the short-chain fatty acid butyrate. Supplementation of butyrate in Phb1-deficient mice ameliorated Paneth cell abnormalities and ileitis. Phb1-deficient ileal enteroid models suggest deleterious epithelial-intrinsic responses to ileal microbiota that were protected by butyrate. CONCLUSIONS: These results suggest a mutual and essential reinforcing interplay of gut microbiota and host IEC, including Paneth cell, mitochondrial health in influencing ileitis. Restoration of butyrate is a potential therapeutic option in Crohn's disease patients harboring epithelial cell mitochondrial dysfunction. Video Abstract.


Assuntos
Doença de Crohn , Microbioma Gastrointestinal , Ileíte , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Ileíte/metabolismo , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Celulas de Paneth , Butiratos/metabolismo , Mitocôndrias/metabolismo , Mucosa Intestinal/metabolismo
3.
Oncogene ; 41(9): 1269-1280, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35087236

RESUMO

Recent studies have reported dysbiotic oral microbiota and tumor-resident bacteria in human head and neck squamous cell carcinoma (HNSCC). We aimed to identify and validate oral microbial signatures in treatment-naïve HNSCC patients compared with healthy control subjects. We confirm earlier reports that the relative abundances of Lactobacillus spp. and Neisseria spp. are elevated and diminished, respectively, in human HNSCC. In parallel, we examined the disease-modifying effects of microbiota in HNSCC, through both antibiotic depletion of microbiota in an induced HNSCC mouse model (4-Nitroquinoline 1-oxide, 4NQO) and reconstitution of tumor-associated microbiota in a germ-free orthotopic mouse model. We demonstrate that depletion of microbiota delays oral tumorigenesis, while microbiota transfer from mice with oral cancer accelerates tumorigenesis. Enrichment of Lactobacillus spp. was also observed in murine HNSCC, and activation of the aryl-hydrocarbon receptor was documented in both murine and human tumors. Together, our findings support the hypothesis that dysbiosis promotes HNSCC development.


Assuntos
Carcinoma de Células Escamosas de Cabeça e Pescoço
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA