Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 17(4): e0267913, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35486639

RESUMO

Systemic lupus erythematosus is a chronic disease characterized by autoantibodies, renal and cutaneous disease, and immune complex formation. Emerging evidence suggests that aberrant DNA repair is an underlying mechanism of lupus development. We previously showed that the POLBY265C/C mutation, which results in development of an aberrant immune repertoire, leads to lupus-like disease in mice. To address whether the hematopoietic compartment is sufficient for lupus development, we transplanted bone marrow cells from POLBY265C/C and POLB+/+ into wild-type congenic mice. Only mice transplanted with the POLBY265C/C bone marrow develop high levels of antinuclear antibodies and renal disease. In conclusion, we show that the hematopoietic compartment harvested from the POLBY265C/C mice is sufficient for development of autoimmune disease.


Assuntos
DNA Polimerase beta/metabolismo , Lúpus Eritematoso Sistêmico , Animais , Anticorpos Antinucleares/genética , Autoanticorpos/genética , Lúpus Eritematoso Sistêmico/genética , Camundongos , Mutação
2.
Cells ; 10(6)2021 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067418

RESUMO

PARP6, a member of a family of enzymes (17 in humans) known as poly-ADP-ribose polymerases (PARPs), is a neuronally enriched PARP. While previous studies from our group show that Parp6 is a regulator of dendrite morphogenesis in rat hippocampal neurons, its function in the nervous system in vivo is poorly understood. Here, we describe the generation of a Parp6 loss-of-function mouse model for examining the function of Parp6 during neurodevelopment in vivo. Using CRISPR-Cas9 mutagenesis, we generated a mouse line that expressed a Parp6 truncated variant (Parp6TR) in place of Parp6WT. Unlike Parp6WT, Parp6TR is devoid of catalytic activity. Homozygous Parp6TR do not exhibit obvious neuromorphological defects during development, but nevertheless die perinatally. This suggests that Parp6 catalytic activity is important for postnatal survival. We also report PARP6 mutations in six patients with several neurodevelopmental disorders, including microencephaly, intellectual disabilities, and epilepsy. The most severe mutation in PARP6 (C563R) results in the loss of catalytic activity. Expression of Parp6C563R in hippocampal neurons decreases dendrite morphogenesis. To gain further insight into PARP6 function in neurons we also performed a BioID proximity labeling experiment in hippocampal neurons and identified several microtubule-binding proteins (e.g., MAP-2) using proteomics. Taken together, our results suggest that PARP6 is an essential microtubule-regulatory gene in mice, and that the loss of PARP6 catalytic activity has detrimental effects on neuronal function in humans.


Assuntos
ADP Ribose Transferases/metabolismo , Hipocampo/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , ADP Ribose Transferases/genética , Animais , Linhagem Celular Tumoral , Humanos , Camundongos Knockout , Ligação Proteica/fisiologia
3.
DNA Repair (Amst) ; 105: 103152, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34186496

RESUMO

The Polb gene encodes DNA polymerase beta (Pol ß), a DNA polymerase that functions in base excision repair (BER) and microhomology-mediated end-joining. The Pol ß-Y265C protein exhibits low catalytic activity and fidelity, and is also deficient in microhomology-mediated end-joining. We have previously shown that the PolbY265C/+ and PolbY265C/C mice develop lupus. These mice exhibit high levels of antinuclear antibodies and severe glomerulonephritis. We also demonstrated that the low catalytic activity of the Pol ß-Y265C protein resulted in accumulation of BER intermediates that lead to cell death. Debris released from dying cells in our mice could drive development of lupus. We hypothesized that deletion of the Neil1 and Ogg1 DNA glycosylases that act upstream of Pol ß during BER would result in accumulation of fewer BER intermediates, resulting in less severe lupus. We found that high levels of antinuclear antibodies are present in the sera of PolbY265C/+ mice deleted of Ogg1 and Neil1 DNA glycosylases. However, these mice develop significantly less severe renal disease, most likely due to high levels of IgM in their sera.


Assuntos
DNA Glicosilases/metabolismo , DNA Polimerase beta/metabolismo , Reparo do DNA , Lúpus Eritematoso Sistêmico/enzimologia , Mutação , Estresse Oxidativo , Animais , DNA/metabolismo , DNA Glicosilases/genética , DNA Polimerase beta/genética , Modelos Animais de Doenças , Deleção de Genes , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA