Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nature ; 611(7937): 709-714, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36130727

RESUMO

The ability to program new modes of catalysis into proteins would allow the development of enzyme families with functions beyond those found in nature. To this end, genetic code expansion methodology holds particular promise, as it allows the site-selective introduction of new functional elements into proteins as noncanonical amino acid side chains1-4. Here we exploit an expanded genetic code to develop a photoenzyme that operates by means of triplet energy transfer (EnT) catalysis, a versatile mode of reactivity in organic synthesis that is not accessible to biocatalysis at present5-12. Installation of a genetically encoded photosensitizer into the beta-propeller scaffold of DA_20_00 (ref. 13) converts a de novo Diels-Alderase into a photoenzyme for [2+2] cycloadditions (EnT1.0). Subsequent development and implementation of a platform for photoenzyme evolution afforded an efficient and enantioselective enzyme (EnT1.3, up to 99% enantiomeric excess (e.e.)) that can promote intramolecular and bimolecular cycloadditions, including transformations that have proved challenging to achieve selectively with small-molecule catalysts. EnT1.3 performs >300 turnovers and, in contrast to small-molecule photocatalysts, can operate effectively under aerobic conditions and at ambient temperatures. An X-ray crystal structure of an EnT1.3-product complex shows how multiple functional components work in synergy to promote efficient and selective photocatalysis. This study opens up a wealth of new excited-state chemistry in protein active sites and establishes the framework for developing a new generation of enantioselective photocatalysts.


Assuntos
Biocatálise , Reação de Cicloadição , Enzimas , Processos Fotoquímicos , Aminoácidos/química , Aminoácidos/metabolismo , Reação de Cicloadição/métodos , Estereoisomerismo , Biocatálise/efeitos da radiação , Enzimas/química , Enzimas/genética , Enzimas/metabolismo , Enzimas/efeitos da radiação , Cristalografia por Raios X , Domínio Catalítico , Código Genético , Desenho de Fármacos
2.
Nature ; 574(7780): 722-725, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31645759

RESUMO

The enzyme protochlorophyllide oxidoreductase (POR) catalyses a light-dependent step in chlorophyll biosynthesis that is essential to photosynthesis and, ultimately, all life on Earth1-3. POR, which is one of three known light-dependent enzymes4,5, catalyses reduction of the photosensitizer and substrate protochlorophyllide to form the pigment chlorophyllide. Despite its biological importance, the structural basis for POR photocatalysis has remained unknown. Here we report crystal structures of cyanobacterial PORs from Thermosynechococcus elongatus and Synechocystis sp. in their free forms, and in complex with the nicotinamide coenzyme. Our structural models and simulations of the ternary protochlorophyllide-NADPH-POR complex identify multiple interactions in the POR active site that are important for protochlorophyllide binding, photosensitization and photochemical conversion to chlorophyllide. We demonstrate the importance of active-site architecture and protochlorophyllide structure in driving POR photochemistry in experiments using POR variants and protochlorophyllide analogues. These studies reveal how the POR active site facilitates light-driven reduction of protochlorophyllide by localized hydride transfer from NADPH and long-range proton transfer along structurally defined proton-transfer pathways.


Assuntos
Clorofila/biossíntese , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Synechococcus/enzimologia , Synechocystis/enzimologia , Catálise , Clorofila/química , Estrutura Molecular , Fotoquímica , Protoclorifilida/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
3.
J Biol Chem ; 299(6): 104806, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37172725

RESUMO

The ß-glucans are structurally varied, naturally occurring components of the cell walls, and storage materials of a variety of plant and microbial species. In the human diet, mixed-linkage glucans [MLG - ß-(1,3/4)-glucans] influence the gut microbiome and the host immune system. Although consumed daily, the molecular mechanism by which human gut Gram-positive bacteria utilize MLG largely remains unknown. In this study, we used Blautia producta ATCC 27340 as a model organism to develop an understanding of MLG utilization. B. producta encodes a gene locus comprising a multi-modular cell-anchored endo-glucanase (BpGH16MLG), an ABC transporter, and a glycoside phosphorylase (BpGH94MLG) for utilizing MLG, as evidenced by the upregulation of expression of the enzyme- and solute binding protein (SBP)-encoding genes in this cluster when the organism is grown on MLG. We determined that recombinant BpGH16MLG cleaved various types of ß-glucan, generating oligosaccharides suitable for cellular uptake by B. producta. Cytoplasmic digestion of these oligosaccharides is then performed by recombinant BpGH94MLG and ß-glucosidases (BpGH3-AR8MLG and BpGH3-X62MLG). Using targeted deletion, we demonstrated BpSBPMLG is essential for B. producta growth on barley ß-glucan. Furthermore, we revealed that beneficial bacteria, such as Roseburia faecis JCM 17581T, Bifidobacterium pseudocatenulatum JCM 1200T, Bifidobacterium adolescentis JCM 1275T, and Bifidobacterium bifidum JCM 1254, can also utilize oligosaccharides resulting from the action of BpGH16MLG. Disentangling the ß-glucan utilizing the capability of B. producta provides a rational basis on which to consider the probiotic potential of this class of organism.


Assuntos
Clostridiales , Dieta , Carboidratos da Dieta , Microbioma Gastrointestinal , beta-Glucanas , Humanos , beta-Glucanas/química , beta-Glucanas/metabolismo , Oligossacarídeos/metabolismo , Carboidratos da Dieta/metabolismo , Hordeum/química , Probióticos , Clostridiales/enzimologia , Clostridiales/metabolismo , Bifidobacterium/metabolismo
4.
J Am Chem Soc ; 145(40): 22041-22046, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37782882

RESUMO

Novel building blocks are in constant demand during the search for innovative bioactive small molecule therapeutics by enabling the construction of structure-activity-property-toxicology relationships. Complex chiral molecules containing multiple stereocenters are an important component in compound library expansion but can be difficult to access by traditional organic synthesis. Herein, we report a biocatalytic process to access a specific diastereomer of a chiral amine building block used in drug discovery. A reductive aminase (RedAm) was engineered following a structure-guided mutagenesis strategy to produce the desired isomer. The engineered RedAm (IR-09 W204R) was able to generate the (S,S,S)-isomer 3 in 45% conversion and 95% ee from the racemic ketone 2. Subsequent palladium-catalyzed deallylation of 3 yielded the target primary amine 4 in a 73% yield. This engineered biocatalyst was used at preparative scale and represents a potential starting point for further engineering and process development.


Assuntos
Aminas , Desenho de Fármacos , Biocatálise , Estereoisomerismo
5.
Chemistry ; 29(29): e202203868, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-36912255

RESUMO

Mycobacterium tuberculosis (Mtb) was responsible for approximately 1.6 million deaths in 2021. With the emergence of extensive drug resistance, novel therapeutic agents are urgently needed, and continued drug discovery efforts required. Host-derived lipids such as cholesterol not only support Mtb growth, but are also suspected to function in immunomodulation, with links to persistence and immune evasion. Mtb cytochrome P450 (CYP) enzymes facilitate key steps in lipid catabolism and thus present potential targets for inhibition. Here we present a series of compounds based on an ethyl 5-(pyridin-4-yl)-1H-indole-2-carboxylate pharmacophore which bind strongly to both Mtb cholesterol oxidases CYP125 and CYP142. Using a structure-guided approach, combined with biophysical characterization, compounds with micromolar range in-cell activity against clinically relevant drug-resistant isolates were obtained. These will incite further development of much-needed additional treatment options and provide routes to probe the role of CYP125 and CYP142 in Mtb pathogenesis.


Assuntos
Mycobacterium tuberculosis , Sistema Enzimático do Citocromo P-450/metabolismo , Colesterol/química , Descoberta de Drogas , Antituberculosos/farmacologia , Antituberculosos/química
6.
Biophys J ; 119(3): 667-689, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32652058

RESUMO

PSD-95 is a member of the membrane-associated guanylate kinase class of proteins that forms scaffolding interactions with partner proteins, including ion and receptor channels. PSD-95 is directly implicated in modulating the electrical responses of excitable cells. The first two PSD-95/disks large/zona occludens (PDZ) domains of PSD-95 have been shown to be the key component in the formation of channel clusters. We report crystal structures of this dual domain in both apo- and ligand-bound form: thermodynamic analysis of the ligand association and small-angle x-ray scattering of the dual domain in the absence and presence of ligands. These experiments reveal that the ligated double domain forms a three-dimensional scaffold that can be described by a space group. The concentration of the components in this study is comparable with those found in compartments of excitable cells such as the postsynaptic density and juxtaparanodes of Ranvier. These in vitro experiments inform the basis of the scaffolding function of PSD-95 and provide a detailed model for scaffold formation by the PDZ domains of PSD-95.


Assuntos
Proteínas do Tecido Nervoso , Domínios PDZ , Proteína 4 Homóloga a Disks-Large , Guanilato Quinases , Ligantes , Proteínas do Tecido Nervoso/metabolismo , Peptídeos , Ligação Proteica
7.
J Biol Chem ; 292(12): 5128-5143, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28053093

RESUMO

The Jeotgalicoccus sp. peroxygenase cytochrome P450 OleTJE (CYP152L1) is a hydrogen peroxide-driven oxidase that catalyzes oxidative decarboxylation of fatty acids, producing terminal alkenes with applications as fine chemicals and biofuels. Understanding mechanisms that favor decarboxylation over fatty acid hydroxylation in OleTJE could enable protein engineering to improve catalysis or to introduce decarboxylation activity into P450s with different substrate preferences. In this manuscript, we have focused on OleTJE active site residues Phe79, His85, and Arg245 to interrogate their roles in substrate binding and catalytic activity. His85 is a potential proton donor to reactive iron-oxo species during substrate decarboxylation. The H85Q mutant substitutes a glutamine found in several peroxygenases that favor fatty acid hydroxylation. H85Q OleTJE still favors alkene production, suggesting alternative protonation mechanisms. However, the mutant undergoes only minor substrate binding-induced heme iron spin state shift toward high spin by comparison with WT OleTJE, indicating the key role of His85 in this process. Phe79 interacts with His85, and Phe79 mutants showed diminished affinity for shorter chain (C10-C16) fatty acids and weak substrate-induced high spin conversion. F79A OleTJE is least affected in substrate oxidation, whereas the F79W/Y mutants exhibit lower stability and cysteine thiolate protonation on reduction. Finally, Arg245 is crucial for binding the substrate carboxylate, and R245E/L mutations severely compromise activity and heme content, although alkene products are formed from some substrates, including stearic acid (C18:0). The results identify crucial roles for the active site amino acid trio in determining OleTJE catalytic efficiency in alkene production and in regulating protein stability, heme iron coordination, and spin state.


Assuntos
Alcenos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Peroxidases/metabolismo , Staphylococcaceae/enzimologia , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Ácidos Graxos/metabolismo , Hidroxilação , Modelos Moleculares , Mutação , Peroxidases/química , Peroxidases/genética , Alinhamento de Sequência , Staphylococcaceae/química , Staphylococcaceae/genética , Staphylococcaceae/metabolismo , Especificidade por Substrato
8.
J Biol Chem ; 292(4): 1310-1329, 2017 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-27932461

RESUMO

The Mycobacterium tuberculosis H37Rv genome encodes 20 cytochromes P450, including P450s crucial to infection and bacterial viability. Many M. tuberculosis P450s remain uncharacterized, suggesting that their further analysis may provide new insights into M. tuberculosis metabolic processes and new targets for drug discovery. CYP126A1 is representative of a P450 family widely distributed in mycobacteria and other bacteria. Here we explore the biochemical and structural properties of CYP126A1, including its interactions with new chemical ligands. A survey of azole antifungal drugs showed that CYP126A1 is inhibited strongly by azoles containing an imidazole ring but not by those tested containing a triazole ring. To further explore the molecular preferences of CYP126A1 and search for probes of enzyme function, we conducted a high throughput screen. Compounds containing three or more ring structures dominated the screening hits, including nitroaromatic compounds that induce substrate-like shifts in the heme spectrum of CYP126A1. Spectroelectrochemical measurements revealed a 155-mV increase in heme iron potential when bound to one of the newly identified nitroaromatic drugs. CYP126A1 dimers were observed in crystal structures of ligand-free CYP126A1 and for CYP126A1 bound to compounds discovered in the screen. However, ketoconazole binds in an orientation that disrupts the BC-loop regions at the P450 dimer interface and results in a CYP126A1 monomeric crystal form. Structural data also reveal that nitroaromatic ligands "moonlight" as substrates by displacing the CYP126A1 distal water but inhibit enzyme activity. The relatively polar active site of CYP126A1 distinguishes it from its most closely related sterol-binding P450s in M. tuberculosis, suggesting that further investigations will reveal its diverse substrate selectivity.


Assuntos
Antifúngicos/química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Inibidores das Enzimas do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/química , Cetoconazol/química , Mycobacterium tuberculosis/enzimologia , Domínio Catalítico , Sistema Enzimático do Citocromo P-450/genética , Mycobacterium tuberculosis/genética , Estrutura Secundária de Proteína
9.
Biochem Biophys Res Commun ; 501(4): 846-850, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29738765

RESUMO

The first crystal structure of a class VII P450, CYP116B46 from Tepidiphilus thermophilus, has been solved at 1.9 Šresolution. The structure reveals overall conservation of the P450-fold and a water conduit around the I-helix. Active site residues have been identified and sequence comparisons have been made with other class VII enzymes. A structure similarity search demonstrated that the P450-TT structure is similar to enzymes capable of oxy-functionalization of fatty acids, terpenes, macrolides, steroids and statins. The insight gained from solving this structure will provide a guideline for future engineering and modelling studies on this catalytically promiscuous class of enzymes.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Heme/química , Bactérias/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Domínios Proteicos , Estrutura Secundária de Proteína , Homologia Estrutural de Proteína
10.
Bioorg Med Chem ; 26(1): 161-176, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29183661

RESUMO

Three series of azole piperazine derivatives that mimic dicyclotyrosine (cYY), the natural substrate of the essential Mycobacterium tuberculosis cytochrome P450 CYP121A1, were prepared and evaluated for binding affinity and inhibitory activity (MIC) against M. tuberculosis. Series A replaces one phenol group of cYY with a C3-imidazole moiety, series B includes a keto group on the hydrocarbon chain preceding the series A imidazole, whilst series C explores replacing the keto group of the piperidone ring of cYY with a CH2-imidazole or CH2-triazole moiety to enhance binding interaction with the heme of CYP121A1. The series displayed moderate to weak type II binding affinity for CYP121A1, with the exception of series B 10a, which displayed mixed type I binding. Of the three series, series C imidazole derivatives showed the best, although modest, inhibitory activity against M. tuberculosis (17d MIC = 12.5 µg/mL, 17a 50 µg/mL). Crystal structures were determined for CYP121A1 bound to series A compounds 6a and 6b that show the imidazole groups positioned directly above the haem iron with binding between the haem iron and imidazole nitrogen of both compounds at a distance of 2.2 Å. A model generated from a 1.5 Šcrystal structure of CYP121A1 in complex with compound 10a showed different binding modes in agreement with the heterogeneous binding observed. Although the crystal structures of 6a and 6b would indicate binding with CYP121A1, the binding assays themselves did not allow confirmation of CYP121A1 as the target.


Assuntos
Antituberculosos/farmacologia , Azóis/farmacologia , Dipeptídeos/farmacologia , Desenho de Fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Piperazinas/farmacologia , Antituberculosos/síntese química , Antituberculosos/química , Azóis/química , Sítios de Ligação/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Dipeptídeos/química , Relação Dose-Resposta a Droga , Ligantes , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Mycobacterium tuberculosis/metabolismo , Peptídeos Cíclicos/química , Piperazina , Piperazinas/química , Relação Estrutura-Atividade
11.
J Am Chem Soc ; 138(3): 1033-9, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26727612

RESUMO

The search for affordable, green biocatalytic processes is a challenge for chemicals manufacture. Redox biotransformations are potentially attractive, but they rely on unstable and expensive nicotinamide coenzymes that have prevented their widespread exploitation. Stoichiometric use of natural coenzymes is not viable economically, and the instability of these molecules hinders catalytic processes that employ coenzyme recycling. Here, we investigate the efficiency of man-made synthetic biomimetics of the natural coenzymes NAD(P)H in redox biocatalysis. Extensive studies with a range of oxidoreductases belonging to the "ene" reductase family show that these biomimetics are excellent analogues of the natural coenzymes, revealed also in crystal structures of the ene reductase XenA with selected biomimetics. In selected cases, these biomimetics outperform the natural coenzymes. "Better-than-Nature" biomimetics should find widespread application in fine and specialty chemicals production by harnessing the power of high stereo-, regio-, and chemoselective redox biocatalysts and enabling reactions under mild conditions at low cost.


Assuntos
Materiais Biomiméticos/metabolismo , NADP/metabolismo , Niacinamida/metabolismo , Biocatálise , Materiais Biomiméticos/química , Estrutura Molecular , Niacinamida/química , Oxirredução
12.
ACS Catal ; 14(15): 11584-11590, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39114090

RESUMO

The ability to introduce noncanonical amino acids as axial ligands in heme enzymes has provided a powerful experimental tool for studying the structure and reactivity of their FeIV=O ("ferryl") intermediates. Here, we show that a similar approach can be used to perturb the conserved Fe coordination environment of 2-oxoglutarate (2OG) dependent oxygenases, a versatile class of enzymes that employ highly-reactive ferryl intermediates to mediate challenging C-H functionalizations. Replacement of one of the cis-disposed histidine ligands in the oxygenase VioC with a less electron donating N δ-methyl-histidine (MeHis) preserves both catalytic function and reaction selectivity. Significantly, the key ferryl intermediate responsible for C-H activation can be accumulated in both the wildtype and the modified protein. In contrast to heme enzymes, where metal-oxo reactivity is extremely sensitive to the nature of the proximal ligand, the rates of C-H activation and the observed large kinetic isotope effects are only minimally affected by axial ligand replacement in VioC. This study showcases a powerful tool for modulating the coordination sphere of nonheme iron enzymes that will enhance our understanding of the factors governing their divergent activities.

13.
Nat Commun ; 15(1): 2740, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548733

RESUMO

Photoreceptor proteins utilise chromophores to sense light and trigger a biological response. The discovery that adenosylcobalamin (or coenzyme B12) can act as a light-sensing chromophore heralded a new field of B12-photobiology. Although microbial genome analysis indicates that photoactive B12-binding domains form part of more complex protein architectures, regulating a range of molecular-cellular functions in response to light, experimental evidence is lacking. Here we identify and characterise a sub-family of multi-centre photoreceptors, termed photocobilins, that use B12 and biliverdin (BV) to sense light across the visible spectrum. Crystal structures reveal close juxtaposition of the B12 and BV chromophores, an arrangement that facilitates optical coupling. Light-triggered conversion of the B12 affects quaternary structure, in turn leading to light-activation of associated enzyme domains. The apparent widespread nature of photocobilins implies involvement in light regulation of a wider array of biochemical processes, and thus expands the scope for B12 photobiology. Their characterisation provides inspiration for the design of broad-spectrum optogenetic tools and next generation bio-photocatalysts.


Assuntos
Pigmentos Biliares , Fotorreceptores Microbianos , Fotoquímica , Biliverdina , Proteínas de Bactérias/metabolismo , Fotorreceptores Microbianos/química , Luz
14.
J Biol Chem ; 287(23): 19699-714, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22500029

RESUMO

The Rhodococcus rhodochrous strain 11Y XplA enzyme is an unusual cytochrome P450-flavodoxin fusion enzyme that catalyzes reductive denitration of the explosive hexahydro-1,3,5-trinitro-1,3,5-triazene (RDX). We show by light scattering that XplA is a monomeric enzyme. XplA has high affinity for imidazole (K(d) = 1.6 µM), explaining previous reports of a red-shifted XplA Soret band in pure enzyme. The true Soret maximum of XplA is at 417 nm. Similarly, unusually weak XplA flavodoxin FMN binding (K(d) = 1.09 µM) necessitates its purification in the presence of the cofactor to produce hallmark flavin contributions absent in previously reported spectra. Structural and ligand-binding data reveal a constricted active site able to accommodate RDX and small inhibitory ligands (e.g. 4-phenylimidazole and morpholine) while discriminating against larger azole drugs. The crystal structure also identifies a high affinity imidazole binding site, consistent with its low K(d), and shows active site penetration by PEG, perhaps indicative of an evolutionary lipid-metabolizing function for XplA. EPR studies indicate heterogeneity in binding mode for RDX and other ligands. The substrate analog trinitrobenzene does not induce a substrate-like type I optical shift but creates a unique low spin EPR spectrum due to influence on structure around the distal water heme ligand. The substrate-free heme iron potential (-268 mV versus NHE) is positive for a low spin P450, and the elevated potential of the FMN semiquinone/hydroquinone couple (-172 mV) is also an adaptation that may reflect (along with the absence of a key Thr/Ser residue conserved in oxygen-activating P450s) the evolution of XplA as a specialized RDX reductase catalyst.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Substâncias Explosivas/química , Flavodoxina/química , Rhodococcus/enzimologia , Triazinas/química , Catálise , Domínio Catalítico , Cristalografia por Raios X , Sistema Enzimático do Citocromo P-450/metabolismo , Substâncias Explosivas/metabolismo , Flavodoxina/metabolismo , Imidazóis/química , Imidazóis/metabolismo , Ligantes , Triazinas/metabolismo
15.
Nat Commun ; 14(1): 5082, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604813

RESUMO

CarH is a coenzyme B12-dependent photoreceptor involved in regulating carotenoid biosynthesis. How light-triggered cleavage of the B12 Co-C bond culminates in CarH tetramer dissociation to initiate transcription remains unclear. Here, a series of crystal structures of the CarH B12-binding domain after illumination suggest formation of unforeseen intermediate states prior to tetramer dissociation. Unexpectedly, in the absence of oxygen, Co-C bond cleavage is followed by reorientation of the corrin ring and a switch from a lower to upper histidine-Co ligation, corresponding to a pentacoordinate state. Under aerobic conditions, rapid flash-cooling of crystals prior to deterioration upon illumination confirm a similar B12-ligand switch occurs. Removal of the upper His-ligating residue prevents monomer formation upon illumination. Combined with detailed solution spectroscopy and computational studies, these data demonstrate the CarH photoresponse integrates B12 photo- and redox-chemistry to drive large-scale conformational changes through stepwise Co-ligation changes.


Assuntos
Temperatura Baixa , Histidina , Ligantes , Oxirredução , Iluminação
16.
ACS Catal ; 12(19): 12123-12131, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36249875

RESUMO

Terpenes are the largest class of natural products and are attractive targets in the fuel, fragrance, pharmaceutical, and flavor industries. Harvesting terpenes from natural sources is environmentally intensive and often gives low yields and purities, requiring further downstream processing. Engineered terpene synthases (TSs) offer a solution to these problems, but the low sequence identity and high promiscuity among TSs are major challenges for targeted engineering. Rational design of TSs requires identification of key structural and chemical motifs that steer product outcomes. Producing the sesquiterpenoid 10-epi-cubebol from farnesyl pyrophosphate (FPP) requires many steps and some of Nature's most difficult chemistry. 10-epi-Cubebol synthase from Sorangium cellulosum (ScCubS) guides a highly reactive carbocationic substrate through this pathway, preventing early quenching and ensuring correct stereochemistry at every stage. The cyclizations carried out by ScCubS potentially represent significant evolutionary expansions in the chemical space accessible by TSs. Here, we present the high-resolution crystal structure of ScCubS in complex with both a trinuclear magnesium cluster and pyrophosphate. Computational modeling, experiment, and bioinformatic analysis identified residues important in steering the reaction chemistry. We show that S206 is crucial in 10-epi-cubebol synthesis by enlisting the nearby F211 to shape the active site contour and prevent the formation of early escape cadalane products. We also show that N327 and F104 control the distribution between several early-stage cations and whether the final product is derived from the germacrane, cadalane, or cubebane hydrocarbon scaffold. Using these insights, we reengineered ScCubS so that its main product was germacradien-4-ol, which derives from the germacrane, rather than the cubebane, scaffold. Our work emphasizes that mechanistic understanding of cation stabilization in TSs can be used to guide catalytic outcomes.

17.
Eur J Med Chem ; 230: 114105, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35065413

RESUMO

There is a pressing need for new drugs against tuberculosis (TB) to combat the growing resistance to current antituberculars. Herein a novel strategy is described for hit generation against promising TB targets involving X-ray crystallographic screening in combination with phenotypic screening. This combined approach (XP Screen) affords both a validation of target engagement as well as determination of in cellulo activity. The utility of this method is illustrated by way of an XP Screen against CYP121A1, a cytochrome P450 enzyme from Mycobacterium tuberculosis (Mtb) championed as a validated drug discovery target. A focused screening set was synthesized and tested by such means, with several members of the set showing promising activity against Mtb strain H37Rv. One compound was observed as an X-ray hit against CYP121A1 and showed improved activity against Mtb strain H37Rv under multiple assay conditions (pan-assay activity). Data obtained during X-ray crystallographic screening were utilized in a structure-based campaign to design a limited number of analogues (less than twenty), many of which also showed pan-assay activity against Mtb strain H37Rv. These included the benzo[b][1,4]oxazine derivative (MIC90 6.25 µM), a novel hit compound suitable as a starting point for a more involved hit to lead candidate medicinal chemistry campaign.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Antituberculosos/farmacologia , Desenho de Fármacos , Humanos , Tuberculose/tratamento farmacológico , Raios X
18.
Biochem J ; 427(3): 455-66, 2010 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-20180779

RESUMO

Bacillus megaterium flavocytochrome P450 BM3 (CYP102A1) is a biotechnologically important cytochrome P450/P450 reductase fusion enzyme. Mutants I401E, F261E and L86E were engineered near the haem 5-methyl group, to explore the ability of the glutamate carboxylates to form ester linkages with the methyl group, as observed for eukaryotic CYP4 relatives. Although no covalent linkage was detected, mutants displayed marked alterations in substrate/inhibitor affinity, with L86E and I401E mutants having lower Kd values for arachidonic acid and dodecanoic (lauric) acid than WT (wild-type) BM3. All mutations induced positive shifts in haem Fe(III)/Fe(II) potential, with substrate-free I401E (-219 mV) being >170 mV more positive than WT BM3. The elevated potential stimulated FMN-to-haem electron transfer ~2-fold (to 473 s-1) in I401E, and resulted in stabilization of Fe(II)O2 complexes in the I401E and L86E P450s. EPR demonstrated some iron co-ordination by glutamate carboxylate in L86E and F261E mutants, indicating structural plasticity in the haem domains. The Fe(II)O2 complex is EPR-silent, probably resulting from antiferromagnetic coupling between Fe(III) and bound superoxide in a ferric superoxo species. Structural analysis of mutant haem domains revealed modest rearrangements, including altered haem propionate interactions that may underlie the thermodynamic perturbations observed. The mutant flavocytochromes demonstrated WT-like hydroxylation of dodecanoic acid, but regioselectivity was skewed towards omega-3 hydroxydodecanoate formation in F261E and towards omega-1 hydroxydodecanoate production in I401E. Our data point strongly to a likelihood that glutamate-haem linkages are disfavoured in this most catalytically efficient P450, possibly due to the absence of a methylene radical species during catalysis.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Ésteres/química , Ácido Glutâmico/química , Heme/química , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Ácido Araquidônico/metabolismo , Proteínas de Bactérias/genética , Cristalografia , Sistema Enzimático do Citocromo P-450/genética , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Ácidos Láuricos/metabolismo , Mutagênese Sítio-Dirigida , Mutação , NADPH-Ferri-Hemoproteína Redutase/genética , Potenciometria , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Espectrofotometria Ultravioleta , Análise Espectral Raman , Especificidade por Substrato
19.
PLoS One ; 15(6): e0235133, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32584877

RESUMO

We have used a combination of computational and structure-based redesign of the low molecular weight protein tyrosine phosphatase, LMW-PTP, to create new activity towards phosphoinositide substrates for which the wild-type enzyme had little or no activity. The redesigned enzymes retain catalytic activity despite residue alterations in the active site, and kinetic experiments confirmed specificity for up to four phosphoinositide substrates. Changes in the shape and overall volume of the active site where critical to facilitate access of the new substrates for catalysis. The kinetics data suggest that both the position and the combination of amino acid mutations are important for specificity towards the phosphoinositide substrates. The introduction of basic residues proved essential to establish new interactions with the multiple phosphate groups in the inositol head, thus promoting catalytically productive complexes. The crystallographic structures of the top-ranking designs confirmed the computational predictions and showed that residue substitutions do not alter the overall folding of the phosphatase or the conformation of the active site P-loop. The engineered LMW-PTP mutants with new activities can be useful reagents in investigating cell signalling pathways and offer the potential for therapeutic applications.


Assuntos
Substituição de Aminoácidos , Simulação por Computador , Fosfatidilinositóis/química , Dobramento de Proteína , Proteínas Tirosina Fosfatases , Domínio Catalítico , Estrutura Secundária de Proteína , Proteínas Tirosina Fosfatases/química , Proteínas Tirosina Fosfatases/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Especificidade por Substrato
20.
Sci Rep ; 9(1): 9067, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31227800

RESUMO

Engineered protein scaffolds are an alternative to monoclonal antibodies in research and drug design due to their small size, ease of production, versatility, and specificity for chosen targets. One key consideration when engineering such proteins is retaining the original scaffold structure and stability upon insertion of target-binding loops. SQT is a stefin A derived scaffold protein that was used as a model to study possible problems associated with solution behaviour of such aptamers. We used an SQT variant with AU1 and Myc insertion peptides (SQT-1C) to study the effect of peptide insertions on protein structure and oligomerisation. The X-ray structure of monomeric SQT-1C revealed a cystatin-like fold. Furthermore, we show that SQT-1C readily forms dimers and tetramers in solution. NMR revealed that these oligomers are symmetrical, with inserted loops comprising the interaction interface. Two possible mechanisms of oligomerisation are compared using molecular dynamics simulations, with domain swap oligomerisation being thermodynamically favoured. We show that retained secondary structure upon peptide insertion is not indicative of unaltered 3D structure and solution behaviour. Therefore, additional methods should be employed to comprehensively assess the consequences of peptide insertions in all aptamers, particularly as uncharacterized oligomerisation may alter binding epitope presentation and affect functional efficiency.


Assuntos
Cistatinas/química , Engenharia de Proteínas , Cristalografia por Raios X , Epitopos/química , Polimerização , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA